Câu hỏi:

12/10/2024 195

Cho tấm nhôm hình vuông cạnh 12cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gập tấm nhôm lại như hình vẽ bên để được một cái hộp không nắp. Với giá trị nào của x thì hộp nhận được có thể tích lớn nhất?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. 6

B. 4

C. 3

D. 2

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: D

*Phương pháp giải:

- Hộp có đáy là hình vuông: 12-2x, chiều cao = cạnh hình vuông ở 4 góc bị cắt

- tính ra thể thích của hình hộp. cho hàm số y=0 giải ra sẽ tìm ra được khoảng x để xét bảng biến thiên với đạo hàm của hàm số y trên khoảng giá trị đó

*Lời giải:

Hình hộp có đáy là hình vuông cạnh: 12 - 2x

Chiều cao của hình hộp là: x

Thể tích hình hộp là y=x(12-2x)2

Bài toán đưa về tìm x ∈ (0; 6) để hàm số y=f(x)=x(12-2x)2 có giá trị lớn nhất.

y'=1(12-2x)2+x.2.(12-2x).(-2)

= 12x2-96x+144;

y' xác định ∀ x ∈ (0; 6)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng biến thiên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số đạt giá trị lớn nhất tại x=2

*Cách tìm m để hàm số đạt min/max

Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số sử dụng bảng biến thiên

Bước 1. Tính đạo hàm f'(x).

Bước 2. Tìm các nghiệm của f'(x) và các điểm f'(x)trên K.

Bước 3. Lập bảng biến thiên của f(x) trên K.

Bước 4. Căn cứ vào bảng biến thiên kết luận Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

3. Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số không sử dụng bảng biến thiên

Trường hợp 1. Tập K là đoạn [a; b]

Bước 1. Tính đạo hàm f'(x).

Bước 2. Tìm tất cả các nghiệm xi ∈[a; b] của phương trình f'(x) = 0 và tất cả các điểm αi ∈ [a; b] làm cho f'(x) không xác định.

Bước 3.Tính f(a), f(b), f(xi), f(αi).

Bước 4. So sánh các giá trị tính được và kết luận Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Trường hợp 2. Tập K là khoảng (a; b)

Bước 1. Tính đạo hàm f'(x).

Bước 2. Tìm tất cả các nghiệm xi ∈ (a; b) của phương trình f'(x) = 0 và tất cả các điểm αi ∈ (a; b) làm cho f'(x) không xác định.

Bước 3. Tính Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bước 4. So sánh các giá trị tính được và kết luận Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xem thêm các bài viết liên quan hay, chi tiết:

Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12

  •  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

GTLN của hàm số y=-x2+4x+7 đạt được khi x bằng:

Xem đáp án » 19/07/2024 238

Câu 2:

Tìm GTNN của hàm số y=x2-3x+5 ?

Xem đáp án » 15/07/2024 211

Câu 3:

Giá trị lớn nhất của hàm số y=5-1(x-1)2 đạt được khi x nhận giá trị bằng

Xem đáp án » 22/07/2024 206

Câu 4:

GTLN của hàm số y = 2sinx + cos2x trên đoạn [0; π] là

Xem đáp án » 20/07/2024 203

Câu 5:

Một hành lang giữa hai tòa tháp có hình dạng một hình lăng trụ đứng. Hai mặt bên ABB’A’ và ACC’A’ là hai tấm kính hình chữ nhật dài 20m, rộng 5m. Với độ dài xấp xỉ nào của BC thì thể tích hành lang này lớn nhất

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Xem đáp án » 19/07/2024 201

Câu 6:

GTNN của hàm số y = xx+2 trên nửa khoảng (-2;4] là

Xem đáp án » 17/07/2024 201

Câu 7:

GTNN của hàm số y=x3+3x2-9x+1 trên đoạn [-4;4] là

Xem đáp án » 19/07/2024 199

Câu 8:

GTLN của hàm số y = sin2x - 3cosx trên đoạn [0; π] là

Xem đáp án » 14/07/2024 196

Câu 9:

Khu chung cư Royal City có 250 căn hộ cho thuê. Nếu người ta cho thuê x căn hộ thì lợi nhuận hàng tháng, tính theo triệu đồng, được cho bởi: P(x) = -8x2 + 3200x  80000. Hỏi lợi nhuận tối đa họ có thể đạt được là bao nhiêu?

Xem đáp án » 18/07/2024 190

Câu 10:

Một nhà máy sản xuất được 60000 sản phẩm trong một ngày và tổng chi phí sản xuất x sản phẩm được cho bởi: 

P(x)=250000+0,08x+200000000x

Hỏi nhà máy nên sản xuất bao nhiêu sản phẩm mỗi ngày để chi phí sản xuất là nhỏ nhất?

Xem đáp án » 13/07/2024 189

Câu 11:

GTLN của hàm số y=x4-8x2+16 trên đoạn [-1;3] là

Xem đáp án » 16/07/2024 184

Câu 12:

Một công ti quản lí chuẩn bị xây dựng một khu chung cư mới. Họ tính toán nếu tòa nhà có x căn hộ thì chi phí bảo trì của tòa nhà là: C(x)=4000-14x+0,04x2. Khu đất của họ có thể xây được tòa nhà chứa tối đa 300 căn hộ. Hỏi họ nên xây dựng tòa nhà có bao nhiêu căn hộ để chi phí bảo trì của tòa nhà là nhỏ nhất?

Xem đáp án » 13/07/2024 178

Câu 13:

GTLN của hàm số y=x+1x2+1 trên khoảng (0; 4) đạt được

Xem đáp án » 13/07/2024 168

Câu 14:

Giá trị lớn nhất của hàm số y=-x2+3, -2x03-x, 0<x3x-3, 3<x7có đồ thị như hình bên là 

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Xem đáp án » 23/07/2024 165

Câu 15:

Giá trị lớn nhất của hàm số f(x)=-x2+4 là:

Xem đáp án » 20/07/2024 163

Câu hỏi mới nhất

Xem thêm »
Xem thêm »