Giải bài tập trang 37 Chuyên đề Toán 10 Bài 4 - Kết nối tri thức

Với Giải bài tập trang 37 Chuyên đề Toán 10 trong Bài 4: Nhị thức newton sách Chuyên đề Toán lớp 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 37.

1 13,438 18/07/2022


Giải bài tập trang 37 Chuyên đề Toán 10 Bài 4 - Kết nối tri thức

Bài 2.9 trang 37 Chuyên đề Toán 10: Sử dụng tam giác Pascal, viết khai triển:

a) (x – 1)5;

b) (2x – 3y)4.

Lời giải:

a) (x – 1)5 = [x + (–1)]5 = x5 + 5x4(–1) + 10x3(–1)2 + 10x2(–1)3 + 5x(–1)4 + (–1)5

= x5 – 5x4 + 10x3 – 10x2 + 5x – 1.

b) (2x – 3y)4 = [(2x + (–3y)]4

= (2x)4 + 4(2x)3(–3y) + 6(2x)2(–3y)2 + 4(2x)(–3y)3 + (–3y)4

= 16x4 – 96x3y + 216x2y2 – 216xy3 + 81y4.

Bài 2.10 trang 37 Chuyên đề Toán 10: Viết khai triển theo nhị thức Newton:

a) (x + y)6;

b) (1 – 2x)5.

Lời giải:

a) (x + y)6

=C60x6+C61x5y+C62x4y2+C63x3y3+C64x2y4+C65xy5+C66y6

=x6+C61x5y+C62x4y2+C63x3y3+C64x2y4+C65xy5+y6.

Chuyên đề Toán 10 Bài 2: Nhị thức newton - Kết nối tri thức (ảnh 1)

Bài 2.11 trang 37 Chuyên đề Toán 10: Tìm hệ số của x8 trong khai triển của (2x + 3)10.

Lời giải:

Số hạng chứa x8 trong khai triển của (2x + 3)10

 C101082x83108=C1022832x8=103680x8.

Vậy hệ số của x8 trong khai triển của (2x + 3)10 là 103680.

Bài 2.12 trang 37 Chuyên đề Toán 10: Biết hệ số của x2 trong khai triển của (1 – 3x)n là 90 . Tìm n.

Lời giải:

Số hạng chứa x2 trong khai triển của (1 – 3x)n hay [(–3x) +1]n

Cnn23x21n2=9Cn2x2.

Vậy hệ số của x2 trong khai triển của (1 – 3x)n9Cn2.

9Cn2=90Cn2=10nn12=10n=5.

Bài 2.13 trang 37 Chuyên đề Toán 10: Từ khai triển biểu thức (3x – 5)4 thành đa thức, hãy tính tổng các hệ số của đa thức nhận được.

Lời giải:

Sử dụng tam giác Pascal, ta có:

(3x – 5)4 = (3x)4 + 4(3x)3(–5) + 6(3x)2(–5)2 + 4(3x)(–5)3 + (–5)4

= 81x4 – 540x3 + 1350x2 – 1500x + 625.

Tổng các hệ số của đa thức này là: 81 – 540 + 1350 – 1500 + 625 = 16.

Bài 2.14 trang 37 Chuyên đề Toán 10: Tìm hệ số của x5 trong khai triển thành đa thức của biểu thức x(1 – 2x)5 + x2(1 + 3x)10.

Lời giải:

+) Số hạng chứa x4 trong khai triển của (1 – 2x)5 hay [(–2x) +1]5

C5542x4154=80x4.

Vậy hệ số của x4 trong khai triển của (1 – 2x)580

 hệ số của x5 trong khai triển của x(1 – 2x)5 là 1.80 = 80 (1).

+) Số hạng chứa x3 trong khai triển của (1 + 3x)10 hay [3x +1]10

C101033x31103=3240x3.

Vậy hệ số của x3 trong khai triển của (1 + 3x)103240

 hệ số của x5 trong khai triển của x2(1 + 3x)10 là 1.3240 = 3240 (2).

+) Từ (1) và (2) suy ra hệ số của x5 trong khai triển thành đa thức của biểu thức x(1 – 2x)5 + x2(1 + 3x)10 là 80 + 3240 = 3320.

Bài 2.15 trang 37 Chuyên đề Toán 10: Tính tổng sau đây:

C202102C20211+22C2021223C20213+22021C20212021.

Lời giải:

C202102C20211+22C2021223C20213+22021C20212021

=C20210+C202112+C2021222+C2021323++C2021202122021

=C2021012021+C20211120202+C202121201922+C202131201823++C2021202122021

=1+22021=12021=1.

Bài 2.16 trang 37 Chuyên đề Toán 10: Tìm số tự nhiên n thoả mãn C2n0+C2n2+C2n4++C2n2n=22021.

Lời giải:

Áp dụng câu c) phần Vận dụng trang 36 ta có:

C2n0C2n1+C2n2C2n3+C2n4+C2n2n1+C2n2n=0

C2n0+C2n2+C2n4++C2n2n=C2n1+C2n3+C2n5++C2n2n1.

Mặt khác, áp dụng câu b) phần Vận dụng trang 36 ta có:

Chuyên đề Toán 10 Bài 2: Nhị thức newton - Kết nối tri thức (ảnh 1)

Bài 2.17 trang 37 Chuyên đề Toán 10: Tìm số nguyên dương n sao cho Cn0+2Cn1+4Cn2++2nCnn=243.

Lời giải:

Có:

Cn0+2Cn1+4Cn2++2nCnn=Cn0+Cn12+Cn222++Cnn2n

=Cn01n+Cn11n12+Cn21n222++Cnn2n=1+2n=3n

3n=243n=5.

Bài 2.18 trang 37 Chuyên đề Toán 10:

Biết rằng (2 + x)100 = a0 + a1x + a2x2 + ... + a100x100. Với giá trị nào của k (0 ≤ k ≤ 100) thì ak Iớn nhất?

Lời giải:

+) Ta có:

Số hạng chứa xk trong khai triển của (2 + x)100 hay (x +2)100

 C100100kxk2100k=C100k2100kxk=2100C100k2kxk.

Vậy hệ số của xk trong khai triển của (x + 2)1002100C100k2kak=2100C100k2k.

+) Giải bất phương trình: ak ≤ ak + 1 (1).

12100C100k2k2100C100k+12k+1C100k2kC100k+12k+1C100kC100k+12k2k+1

100!k!100k!100!k+1!100k1!12k+1!100k1!k!100k!12k+1100k12

2k+1100k3k98k32 (vì k là số tự nhiên).

+) Vì ak ≤ ak + 1k32 nên ak ≥ ak + 1 k32.

Do đó a1a2...a32a33a34a35...a100.

Ta thấy dấu "=" không xảy ra với bất kì giá trị nào của k.

Do đó a33 là giá trị lớn nhất trong các ak.

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giải bài tập trang 32, 33 Chuyên đề Toán 10 Bài 4

Giải bài tập trang 34 Chuyên đề Toán 10 Bài 4

Giải bài tập trang 35, 36 Chuyên đề Toán 10 Bài 4

1 13,438 18/07/2022


Xem thêm các chương trình khác: