Chuyên đề Toán 11 Bài 2 (Kết nối tri thức): Phép tịnh tiến
Với giải bài tập Chuyên đề Toán 11 Bài 2: Phép tịnh tiến sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Chuyên đề học tập Toán 11.
Giải Chuyên đề Toán 11 Bài 2: Phép tịnh tiến
Lời giải:
Nhắc đến hướng và độ dài (đều nhau), có nghĩa là nhắc đến khái niệm vectơ, một nội dung kiến thức trong Toán học. Vậy khi diễu hành, để đội hình được giữ vững, những người tham gia cần vận dụng một số kiến thức về Toán học.
1. Phép tịnh tiến
Lời giải:
Để giữa vững đội hình, ở mỗi bước, các vectơ dịch chuyển của những người tham gia cần có cùng phương, cùng hướng và có độ dài bằng nhau hay các vectơ dịch chuyển này phải bằng nhau.
Lời giải:
Phép tịnh tiến biến điểm M thành M' thì .
Suy ra .
Do đó, phép tịnh tiến biến điểm M' thành điểm M.
Lời giải:
Ta có: nên ảnh của điểm M qua phép tịnh tiến theo vectơ là điểm C.
nên ảnh của điểm N qua phép tịnh tiến theo vectơ là điểm D.
nên ảnh của điểm P qua phép tịnh tiến theo vectơ là điểm E.
nên ảnh của điểm Q qua phép tịnh tiến theo vectơ là điểm F.
nên ảnh của điểm B qua phép tịnh tiến theo vectơ là điểm H.
Lời giải:
Để giữ vững đội hình, sau mỗi bước, tất cả mọi người tham gia trong khối diễu hành của Hùng cần dời tới vị trí mới là ảnh của vị trí cũ qua phép tịnh tiến theo vectơ với vectơ có hướng theo hướng đông và có độ dài cm.
2. Tính chất
HĐ2 trang 10 Chuyên đề Toán 11: Phép tịnh tiến biến biến M thành M', N thành N' (H.1.7).
b) Tìm mối quan hệ giữa hai vectơ và .
Lời giải:
a) Phép tịnh tiến biến điểm M thành M' thì và biến N thành N' thì .
Ta có: và .
Do đó, .
b) Theo quy tắc ba điểm ta có: và .
Mà theo câu a) ta có: .
Do đó, .
Lời giải:
Ta có: MOO'M' là hình bình hành nên và .
Vì OM = R nên , R cố định nên O' luôn cách M' một khoảng không đổi bằng R.
Do O, O' cố định và nên phép tịnh tiến theo vectơ biến điểm M thành điểm M'. Suy ra nếu M thay đổi trên (O; R) thì M' luôn là ảnh của điểm M qua phép tịnh tiến theo vectơ .
Lại có phép tịnh tiến theo vectơ biến đường tròn (O; R) thành đường tròn có bán kính là R và có tâm là ảnh của tâm O qua phép tịnh tiến theo vectơ hay chính là điểm O'. Điều này có nghĩa là đường tròn (O'; R) là ảnh của đường tròn (O; R) qua phép tịnh tiến theo vectơ .
Mà O'M' = R không đổi nên M' luôn thuộc đường tròn (O'; R).
Vậy khi M thay đổi trên (O; R) thì M' thay đổi trên đường tròn (O'; R) là ảnh của (O; R) qua phép tịnh tiến theo vectơ .
Lời giải:
Đặt một số điểm như hình vẽ.
Ta thấy: nên phép tịnh tiến biến các điểm H, C, E tương ứng thành E, D, F. Do đó, biến tam giác HCE thành tam giác EDF hay phép tịnh tiến theo vectơ biến một viên gạch màu xanh thành một viên gạch màu xanh. Đối với các viên gạch màu xanh khác, thực hiện tương tự. Vậy phép tịnh tiến theo vectơ biến mỗi viên gạch màu xanh thành một viên gạch màu xanh.
Ta cũng có: nên phép tịnh tiến biến các điểm C, D, E tương ứng thành D, G, F. Do đó, biến tam giác CDE thành tam giác DGF hay phép tịnh tiến theo vectơ biến một viên gạch màu đỏ thành một viên gạch màu đỏ. Đối với các viên gạch màu đỏ khác, thực hiện tương tự. Vậy phép tịnh tiến theo vectơ biến mỗi viên gạch màu đỏ thành một viên gạch màu đỏ.
Bài tập
Lời giải:
Vì là vectơ chỉ phương của đường thẳng ∆ nên giá của vectơ song song hoặc trùng với đường thẳng ∆.
Lấy điểm M bất kì thuộc đường thẳng ∆, gọi M' là ảnh của M qua phép tịnh tiến . Khi đó .
Do đó, vectơ có giá là đường thẳng MM' phải song song hoặc trùng với đường thẳng ∆, mà M ∈ ∆ nên hai đường thẳng MM' và ∆ trùng nhau hay M' ∈ ∆.
Vậy phép tịnh tiến biến mỗi điểm M thuộc ∆ thành điểm M' cũng thuộc ∆ hay phép tịnh tiến biến ∆ thành chính nó.
a) Xác định ảnh của tâm đường tròn (C) qua phép tịnh tiến
b) Viết phương trình đường tròn (C') là ảnh của (C) qua .
Lời giải:
Ta có (C): (x – 1)2 + (y + 2)2 = 25 hay (x – 1)2 + [y – (– 2)]2 = 52.
Suy ra đường tròn (C) có tâm I(1; – 2) và bán kính R = 5.
a) Ảnh của đường tròn (C) qua phép tịnh tiến theo vectơ là một đường tròn bán kính bằng 5, gọi là (C').
Gọi I' là tâm của (C'). Ta có I' là ảnh của I qua phép tịnh tiến theo vectơ nên . Suy ra I'(4; 2). Vậy ảnh của (C) là đường tròn (C') có tâm I'(4; 2) và bán kính bằng 5.
b) Ta có (C'): (x – 4)2 + (y – 2)2 = 25.
Lời giải:
Đặt các điểm như hình vẽ trên. Viên gạch ở hàng dọc thứ 4 từ trái sang và hàng ngang thứ 2 từ dưới lên là viên gạch GDFJ, viên gạch ở góc dưới bên trái là viên gạch HCEI.
Theo quy tắc hình bình hành, ta suy ra . Đặt .
Phép tịnh tiến biến các điểm H, C, E, I tương ứng thành các điểm G, D, F, J. Do đó, phép tịnh tiến biến viên gạch HCEI thành viên gạch GDFJ.
Vậy trong việc lát sàn nhà như Hình 1.11, viên gạch ở hàng dọc thứ 4 từ trái sang và hàng ngang thứ 2 từ dưới lên là ảnh của viên gạch ở góc dưới bên trái qua phép tịnh tiến theo vectơ với .
Xem thêm lời giải bài tập Chuyên đề Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức