Câu hỏi:
19/07/2024 162
Xét khai triển của (2x + 12)4. Số hạng không chứa biến x của khai triển là:
A. 12;
B. 124;
Đáp án chính xác
C. 128;
D. 2.128.
Trả lời:
Giải bởi Vietjack
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
\[{\left( {2x + 12} \right)^4} = C_4^0.{\left( {2x} \right)^4} + C_4^1.{\left( {2x} \right)^3}{.12^1} + .C_4^2.{\left( {2x} \right)^2}{.12^2} + C_4^3.{\left( {2x} \right)^1}{.12^3} + C_4^4{.12^4}\]
Do đó, số hạng không chứa x của khai triển là \[C_4^4{.12^4}\]= 124.
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
\[{\left( {2x + 12} \right)^4} = C_4^0.{\left( {2x} \right)^4} + C_4^1.{\left( {2x} \right)^3}{.12^1} + .C_4^2.{\left( {2x} \right)^2}{.12^2} + C_4^3.{\left( {2x} \right)^1}{.12^3} + C_4^4{.12^4}\]
Do đó, số hạng không chứa x của khai triển là \[C_4^4{.12^4}\]= 124.