Câu hỏi:
06/11/2024 1,677Trong một lớp học gồm có 18 học sinh nam và 17 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được gọi có cả nam và nữ bằng:
A. \(\frac{{65}}{{71}}\);
B. \(\frac{{69}}{{77}}\);
C. \(\frac{{443}}{{506}}\);
D. \(\frac{{68}}{{75}}\).
Trả lời:
Đáp án đúng là: B
Lời giải:
Số phần tử của không gian mẫu là: n(Ω) = \(C_{35}^4\) = 52360.
Gọi A là biến cố: “4 học sinh được gọi có cả nam và nữ” ta có các trường hợp sau:
Trường hợp 1, chọn được 1 nam và 3 nữ có \(C_{18}^1.C_{17}^3\) cách chọn (vì chọn 1 nam trong 18 nam và 3 nữ trong 17 nữ)
Trường hợp 2, chọn được 2 nam và 2 nữ có \(C_{18}^2.C_{17}^2\) cách chọn (vì chọn 2 nam trong 18 nam và 2 nữ trong 17 nữ)
Trường hợp 3, chọn được 3 nam và 1 nữ có \(C_{18}^3.C_{17}^1\) cách chọn (vì chọn 3 nam trong 18 nam và 1 nữ trong 17 nữ)
Số phần tử của biến cố A là: n(A) = \[C_{18}^1.C_{17}^3 + C_{18}^2.C_{17}^2 + C_{18}^3.C_{17}^1\] = 46920.
Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{46920}}{{52360}} = \frac{{69}}{{77}}\).
*Phương pháp giải:
Bước 1: Xác định biến cố của các xác suất, có thể gọi tên các biến cố A; B; C; D để biểu diễn.
Bước 2: Tìm mối quan hệ giữa các biến cố vừa đặt tên, biểu diễn biến cố trung gian và quan trọng nhất là biến cố đề bài đang yêu cầu tính xác suất thông qua các biến cố ở bước 1.
Bước 3: Sử dụng các mối quan hệ vừa xác định ở bước 2 để chọn công thức cộng hay công thức nhân phù hợp.
*Lý thuyết:
a) Công thức cộng xác suất
- Nếu thì A và B được gọi là hai biến cố xung khắc.
- Nếu hai biến cố A, B xung khắc nhau thì
- Nếu các biến cố A1 ; A2; A3 ; … An đôi một xung khắc với nhau thì
- Công thức tính xác suất của biến cố đối:
- Mở rộng: Với hai biến cố bất kì cùng liên quan đến phép thử thì:
b) Công thức nhân xác suất
- Hai biến cố gọi là độc lập nếu việc xảy ra hay không xảy ra của biến cố này không ảnh hưởng tới xác suất xảy ra biến cố kia.
- Nếu A và B là hai biến cố độc lập khi và chỉ khi
- Một cách tổng quát, nếu k biến cố A1,A2,A3,...,Ak là độc lập thì
* Chú ý:
Nếu A và B độc lập thì A và độc lập, B và độc lập, và độc lập. Do đó nếu A và B độc lập thì ta còn có các đẳng thức
Xem thêm
Lý thuyết Xác suất của biến cố (mới + Bài Tập) – Toán 11
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá át hay lá rô là
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá át hay lá rô là
Câu 2:
Trong giải bóng đá nữ ở trường THPT có 12 đội tham gia, trong đó có hai đội của hai lớp 12A2 và 11A6. Ban tổ chức tiến hành bốc thăm ngẫu nhiên để chia thành hai bảng đấu A, B mỗi bảng 6 đội. Xác suất để 2 đội của hai lớp 12A2 và 11A6 ở cùng một bảng là:
Câu 3:
Gieo 3 đồng tiền xu là một phép thử ngẫu nhiên có không gian mẫu là:
Gieo 3 đồng tiền xu là một phép thử ngẫu nhiên có không gian mẫu là:
Câu 4:
Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở hai lần gieo đầu bằng số chấm ở lần gieo thứ ba:
Câu 5:
Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Số phần tử của không gian mẫu là:
Câu 6:
Gieo con súc sắc hai lần. Gọi A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm xuất hiện. Số phần tử của biến cố A là:
Câu 7:
Đội thanh niên xung kích của trường THPT có 12 học sinh gồm 5 học sinh khối 12, 4 học sinh khối 11 và 3 học sinh khối 10. Chọn ngẫu nhiên 4 học sinh để làm nhiệm vụ mỗi buổi sáng. Tính xác suất sao cho 4 học sinh được chọn thuộc không quá hai khối.
Hướng dẫn giải
Câu 8:
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được một lá rô hay một lá hình người là:
Câu 9:
Cho phép thử có không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Các cặp biến cố không đối nhau là
Cho phép thử có không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Các cặp biến cố không đối nhau là
Câu 10:
Trong một hộp có 10 viên bi đánh số từ 1 đến 10, lấy ngẫu nhiên ra hai bi. Tính xác suất để hai bi lấy ra có tích hai số trên chúng là một số lẻ.
Câu 11:
Kết quả (b; c) của việc gieo một con súc sắc cân đối hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện lần gieo thứ hai được thay vào phương trình bậc hai x2 + bx + c = 0. Tính xác suất để phương trình bậc hai đó vô nghiệm
Câu 12:
Cho E và \(\overline E \) là hai biến cố đối nhau. Chọn câu đúng.
Cho E và \(\overline E \) là hai biến cố đối nhau. Chọn câu đúng.
Câu 13:
Một bình đựng 5 quả cầu xanh và 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu khác màu là:
Câu 14:
Cho X = {0; 1; 2; … ; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Tính xác suất để trong ba số được chọn không có hai số liên tiếp.
Hướng dẫn giải