Câu hỏi:
22/07/2024 155Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(– 1; 1), B(1; 3), C(5; 2). Khi đó \(\widehat {BAC}\) bằng:
A. 54°27’;
B. 35°32’;
C. 33°12’;
D. 53°18’.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
⦁ \(\overrightarrow {AB} = \left( {2;2} \right)\). Suy ra \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \);
⦁ \(\overrightarrow {AC} = \left( {6;1} \right)\). Suy ra \(AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{6^2} + {1^2}} = \sqrt {37} \).
Suy ra \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\,\,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}}\)
\( = \frac{{2.6 + 2.1}}{{2\sqrt 2 .\sqrt {37} }} = \frac{{7\sqrt {74} }}{{74}}\).
Suy ra \(\widehat {BAC} \approx 35^\circ 32'\).
Vậy ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
⦁ \(\overrightarrow {AB} = \left( {2;2} \right)\). Suy ra \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \);
⦁ \(\overrightarrow {AC} = \left( {6;1} \right)\). Suy ra \(AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{6^2} + {1^2}} = \sqrt {37} \).
Suy ra \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\,\,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}}\)
\( = \frac{{2.6 + 2.1}}{{2\sqrt 2 .\sqrt {37} }} = \frac{{7\sqrt {74} }}{{74}}\).
Suy ra \(\widehat {BAC} \approx 35^\circ 32'\).
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {5;2} \right),\,\,\vec b = \left( {10;6 - 2x} \right)\). Giá trị của x để hai vectơ \(\vec a\) và \(\vec b\) cùng phương là:
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {2;1} \right),\,\,\vec b = \left( {3;4} \right),\,\,\vec c = \left( {7;2} \right)\). Biết rằng \(\vec c = m\vec a + n\vec b\). Tổng m + n bằng:
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho A(–4; 1), B(2; 4), C(2; –2). Tọa độ điểm D thỏa mãn C là trọng tâm của tam giác ABD là:
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho các điểm A(2; 5), B(1; 1), C(3; 3) và một điểm E thỏa mãn \(\overrightarrow {AE} = 3\overrightarrow {AB} - 2\overrightarrow {AC} \). Tọa độ của điểm E là:
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 3) và B(–2; 1). Điểm C thuộc tia Ox sao cho tam giác ABC vuông tại C có tọa độ là:
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {3; - 2} \right),\,\,\vec b = \left( {1;4} \right)\). Tọa độ của \(\vec c\) thỏa mãn \(\vec c = 5\vec a + 2\vec b\) là:
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {2;1} \right),\,\,\vec b = \left( {3;4} \right),\,\,\vec c = \left( { - 7;2} \right)\). Nếu \(\vec x - 2\vec a = \vec b - 3\vec c\) thì: