Câu hỏi:
21/07/2024 129
Tập xác định của hàm số \(f(x) = \sqrt {2x - 4} \) là:
A. [2; +∞);
Đáp án chính xác
B. ℝ \ {2};
C. (–∞; 2];
D. ℝ.
Trả lời:
Giải bởi Vietjack
Hướng dẫn giải:
Đáp án đúng là: A.
Điều kiện xác định của hàm số \(f(x) = \sqrt {2x - 4} \) là: 2x – 4 ≥ 0 ⇔ 2x ≥ 4 ⇔x ≥ 2
Vậy tập xác định của hàm số \(f(x) = \sqrt {2x - 4} \) là D = [2; +∞).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 5:
Tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là:
Tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là:
Xem đáp án »
13/07/2024
144
Câu 6:
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập xác định của hàm số.
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập xác định của hàm số.
Xem đáp án »
23/07/2024
135
Câu 8:
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập giá trị của hàm số.
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Xem đáp án »
13/07/2024
133
Câu 10:
Hàm số v = f(t) được cho bởi bảng như sau:
Tìm tập xác định của hàm số này.
Hàm số v = f(t) được cho bởi bảng như sau:
Tìm tập xác định của hàm số này.
Xem đáp án »
21/07/2024
117
Câu 11:
Tập giá trị của hàm số: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là:
Tập giá trị của hàm số: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là:
Xem đáp án »
13/07/2024
117