Câu hỏi:
04/11/2024 5,810
Có bao nhiêu đoạn thẳng được tạo thành từ 10 điểm phân biệt khác nhau
Có bao nhiêu đoạn thẳng được tạo thành từ 10 điểm phân biệt khác nhau
A. 45;
A. 45;
B. 90;
B. 90;
C. 35;
D. 55.
Trả lời:
Đáp án đúng là: A
*Lời giải:
Giả sử ta có 2 điểm A, B phân biệt thì có một đoạn thẳng AB (đoạn thẳng AB và đoạn thẳng BA là một)
Vì cứ chọn 2 điểm bất kỳ trong 10 điểm ta được một đoạn thẳng nên mỗi cách chọn ra 2 điểm trong 10 điểm là một tổ hợp chập 2 của 10 phần tử. Vậy số đoạn thẳng được tạo thành từ 10 điểm phân biệt khác nhau là = 45 (đoạn thẳng)
*Phương pháp giải:
- Chọn bất kì 2 điểm trong 10 điểm nên ta sẽ có là tổ hợp
- áp dụng công thức tổ hợp:
*Lý thuyến cần nắm về tổ hợp, chỉnh hợp:
Chỉnh hợp
Một chỉnh hợp chập k của n là một cách sắp xếp có thứ tự k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 1 ≤ k ≤ n).
Số các chỉnh hợp chập k của n, kí hiệu là , được tính bằng công thức:
= n.(n – 1)…(n – k + 1) hay (1 ≤ k ≤ n).
Chú ý :
+ Hoán vị sắp xếp tất cả các phần tử của tập hợp, còn chỉnh hợp chọn ra một số phần tử và sắp xếp chúng.
+ Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử đó. Vì vậy Pn =
Tổ hợp
Một tổ hợp chập k của n là một cách chọn k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 0 ≤ k ≤ n).
Số các tổ hợp chập k của n, kí hiệu là , được tính bằng công thức :
Chú ý :
+) <
+) Chỉnh hợp và tổ hợp có điểm giống nhau là đều chọn một số phần tử trong một tập hợp, nhưng khác nhau ở chỗ, chỉnh hợp là chọn có xếp thứ tự, còn tổ hợp là chọn không xếp thứ tự.
Ứng dụng hoán vị, chỉnh hợp, tổ hợp vào các bài toán đếm
Các khái niệm hoán vị, chỉnh hợp và tổ hợp liên quan mật thiết với nhau và là những khái niệm cốt lõi của các phép đếm. Rất nhiều bài toán liên quan đến việc lựa chọn, việc sắp xếp, vì vậy các công thức tính Pn, , sẽ được dùng rất nhiều.
Xem thêm các bài viết liên quan hay, chi tiết
Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - Toán 10 Kết nối tri thức
Giải Toán 10 (Kết nối tri thức): Bài tập cuối chương 8
TOP 30 câu Trắc nghiệm Ôn tập cuối chương 8 (Kết nối tri thức 2024) có đáp án - Toán 10
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.
Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.
Câu 3:
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ đứng xen kẽ:
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ đứng xen kẽ:
Câu 4:
Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?
Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?
Câu 5:
Từ 2 chữ số 1 và 8 lập được bao nhiêu số tự nhiên có 8 chữ số sao cho không có 2 chữ số 1 đứng cạnh nhau?
Từ 2 chữ số 1 và 8 lập được bao nhiêu số tự nhiên có 8 chữ số sao cho không có 2 chữ số 1 đứng cạnh nhau?
Câu 7:
Cho các số 1; 2; 3; 4; 5; 6; 7. Có bao nhiêu số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng chữ số 3
Cho các số 1; 2; 3; 4; 5; 6; 7. Có bao nhiêu số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng chữ số 3
Câu 8:
Bạn Dũng có 8 quyển truyện tranh khác nhau và 7 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Bạn Dũng có 8 quyển truyện tranh khác nhau và 7 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Câu 10:
Trong các số nguyên từ 100 đến 999, số các số mà các chữ số của nó tăng dần hoặc giảm dần (kể từ trái qua phải) bằng:
Trong các số nguyên từ 100 đến 999, số các số mà các chữ số của nó tăng dần hoặc giảm dần (kể từ trái qua phải) bằng:
Câu 11:
Trong một hộp có 7 viên bi đỏ, 5 viên bi trắng và 6 viên bi xanh. Chọn ngẫu nhiên ra 4 viên bi. Có bao nhiêu cách để chọn được số bi có đủ 3 màu và chọn được 2 viên bi xanh.
Trong một hộp có 7 viên bi đỏ, 5 viên bi trắng và 6 viên bi xanh. Chọn ngẫu nhiên ra 4 viên bi. Có bao nhiêu cách để chọn được số bi có đủ 3 màu và chọn được 2 viên bi xanh.
Câu 12:
Lớp 10A có 20 học sinh nữ và 15 học sinh nam. Thầy giáo có bao nhiêu cách chọn ra một học sinh tham gia đội xung kích của trường
Lớp 10A có 20 học sinh nữ và 15 học sinh nam. Thầy giáo có bao nhiêu cách chọn ra một học sinh tham gia đội xung kích của trường
Câu 13:
Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Có bao nhiêu cách chọn tên 4 học sinh để cho đi du lịch
Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Có bao nhiêu cách chọn tên 4 học sinh để cho đi du lịch
Câu 14:
Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài sao cho sách Văn phải xếp kề nhau và sách Toán xếp kề nhau?
Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài sao cho sách Văn phải xếp kề nhau và sách Toán xếp kề nhau?
Câu 15:
Cho các số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau
Cho các số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau