Câu hỏi:

28/11/2024 394

Cho tam giác ABC a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.


A. \[\sqrt 2 \];


Đáp án chính xác


B. \[\frac{{\sqrt 2 }}{2}\];



C. \(\frac{{\sqrt 2 }}{3}\);



D. \(\sqrt 3 \)


Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Lời giải

Ta có : \[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\sqrt 6 }^2} + {{(\sqrt 3 + 1)}^2} - {2^2}}}{{2.\sqrt 6 .(\sqrt 3 + 1)}}\]\[ = \frac{{\sqrt 2 }}{2}\]\[ \Rightarrow \]\(\widehat A\) = 45°.

Do đó : \[R = \frac{a}{{2\sin A}}\]\[ = \frac{2}{{2.\sin 45^\circ }}\]\[ = \sqrt 2 \].

*Phương pháp giải:

 Sử dụng đinh lý sin trong tam giác

Cho tam giác ABC có BC = a, CA = b và AB = c, R là bán kính đường tròn ngoại tiếp tam giác ABC. Khi đó:

Cách tính bán kính đường tròn ngoại tiếp tam giác (cực hay, chi tiết)

*Lý thuyết:

Phương pháp 1: Sử dụng đinh lý sin trong tam giác

Cho tam giác ABC có BC = a, CA = b và AB = c, R là bán kính đường tròn ngoại tiếp tam giác ABC. Khi đó:

Cách tính bán kính đường tròn ngoại tiếp tam giác (cực hay, chi tiết)

Phương pháp 2: Sử dụng diện tích tam giác

Cách tính bán kính đường tròn ngoại tiếp tam giác (cực hay, chi tiết)

Phương pháp 3: Sử dụng trong hệ tọa độ

- Tìm tọa độ tâm O của đường tròn ngoại tiếp tam giác ABC

- Tìm tọa độ một trong ba đỉnh A, B, C (nếu chưa có)

- Tính khoảng cách từ tâm O tới một trong ba đỉnh A, B, C, đây chính là bán kính cần tìm

 R = OA = OB = OC.

Phương pháp 4: Sử dụng trong tam giác vuông (kiến thức lớp 9)

Tâm đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền, do đó bán kính đường tròn ngoại tiếp tam giác vuông chính bằng nửa độ dài cạnh huyền.

Xem thêm

Bán kính đường tròn ngoại tiếp tam giác đều 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính diện tích tam giác có ba cạnh lần lượt là 5; 12; 13.

Xem đáp án » 14/07/2024 601

Câu 2:

Tính diện tích tam giác ABC biết A = 60°; b = 10; c = 20.

Xem đáp án » 16/07/2024 505

Câu 3:

Hình bình hành ABCD có AB = a; \(BC = a\sqrt 2 \)\(\widehat {BAD} = 45^\circ \). Khi đó hình bình hành có diện tích bằng

Xem đáp án » 11/11/2024 422

Câu 4:

Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).

Xem đáp án » 18/07/2024 304

Câu 5:

Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:

(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.

Xem đáp án » 14/07/2024 283

Câu 6:

Hình bình hành có hai cạnh là 35, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.

Xem đáp án » 14/07/2024 245

Câu 7:

Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).

Xem đáp án » 22/07/2024 200

Câu 8:

Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B

Xem đáp án » 21/07/2024 194

Câu 9:

Tam giác ABC có tổng hai góc BC bằng 135° và độ dài cạnh BC bằng a. Tính bán kính đường tròn ngoại tiếp tam giác.

Xem đáp án » 14/07/2024 194

Câu 10:

Trong tam giác ABC, hệ thức nào sau đây sai?

Xem đáp án » 14/07/2024 183

Câu 11:

Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.

Xem đáp án » 20/07/2024 168

Câu 12:

Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng

Xem đáp án » 23/07/2024 163

Câu 13:

Tam giác ABC A = 120° khẳng định nào sau đây đúng?

Xem đáp án » 21/07/2024 158

Câu 14:

Tam giác ABCAB = 7; AC = 5 và \(\cos \left( {B + C} \right) = - \frac{1}{5}\). Tính BC

Xem đáp án » 21/07/2024 136

Câu hỏi mới nhất

Xem thêm »
Xem thêm »