Thi Online Trắc nghiệm Toán 10 Bài 6. Hệ thức lượng trong tam giác có đáp án
Trắc nghiệm Toán 10 Bài 6. Hệ thức lượng trong tam giác có đáp án
-
213 lượt thi
-
15 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
14/07/2024Tính diện tích tam giác có ba cạnh lần lượt là 5; 12; 13.
Đáp án đúng là: B
Nửa chu vi của tam giác là: \(p = \frac{{5 + 12 + 13}}{2} = 15\)
Diện tích của tam giác là:
\(S = \sqrt {p\left( {p - 5} \right)\left( {p - 12} \right)\left( {p - 13} \right)} = \sqrt {15\left( {15 - 5} \right)\left( {15 - 12} \right)\left( {15 - 13} \right)} = 30\).
Câu 2:
21/07/2024Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Đáp án đúng là: A
Áp dụng hệ quả của định lý côsin, ta có: \[\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]
\[ \Leftrightarrow \cos B = \frac{{B{C^2} + A{B^2} - A{C^2}}}{{2AB.BC}} = \frac{{{6^2} + {3^2} - {{\left( {3\sqrt 3 } \right)}^2}}}{{2.6.3}} = \frac{1}{2} \Rightarrow \widehat B = 60^\circ \].
Câu 3:
18/07/2024Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Đáp án đúng là: C
Ta có: \[\frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{AB}}{{AC}} = \frac{c}{b} = \frac{{\sin C}}{{\sin B}} = \frac{{\sin (180^\circ - 75^\circ - 45^\circ )}}{{\sin 45^\circ }} = \frac{{\sqrt 6 }}{2}\].
Câu 4:
20/07/2024Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Đáp án đúng là: B
Ta có: \[\frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow AC = b = \frac{{c.\sin B}}{{\sin C}} = \frac{{AB.\sin B}}{{\sin C}} = \frac{{3.\sin {{30}^0}}}{{\sin {{45}^0}}} = \frac{{3\sqrt 2 }}{2}\].
Câu 5:
14/07/2024Tam giác ABC có tổng hai góc B và C bằng 135° và độ dài cạnh BC bằng a. Tính bán kính đường tròn ngoại tiếp tam giác.
Đáp án đúng là: A
Ta có góc A = 180° – 135° = 45°
\[\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{a}{{2\sin 45^\circ }} = \frac{{a\sqrt 2 }}{2}\].
Câu 6:
21/07/2024Tam giác ABC có A = 120° khẳng định nào sau đây đúng?
Đáp án đúng là: B
Áp dụng định lí Côsin tại đỉnh A ta có: a2 = b2 + c2 – 2bc.cosA
\[ \Rightarrow \]a2 = b2 + c2 – 2bc.cos120° = b2 + c2 + bc
Câu 7:
14/07/2024Trong tam giác ABC, hệ thức nào sau đây sai?
Đáp án đúng là: D
Theo định lí hàm số sin ta có: \[\frac{a}{{\sin A}} = \frac{b}{{{\mathop{\rm sinB}\nolimits} }} = \frac{c}{{{\mathop{\rm sinC}\nolimits} }} = 2R\]
Suy ra:
+ \[\frac{a}{{\sin A}} = \frac{b}{{{\mathop{\rm sinB}\nolimits} }} \Rightarrow a = \frac{{b.\sin A}}{{\sin B}}\]. Do đó đáp án A đúng.
+ \[\frac{a}{{\sin A}} = \frac{c}{{{\mathop{\rm sinC}\nolimits} }} \Rightarrow \sin C = \frac{{c.\sin A}}{a}\]. Do đó đáp án B đúng.
+ \[\frac{a}{{\sin A}} = 2R \Rightarrow a = 2R.\sin A\].Do đó đáp án C đúng.
+ \[\frac{b}{{{\mathop{\rm sinB}\nolimits} }} = 2R \Rightarrow \frac{b}{2} = R\sin B \Rightarrow \frac{b}{{2{\mathop{\rm cosB}\nolimits} }} = R\tan B\]. Do đó đáp án D sai.
Câu 8:
16/07/2024Tính diện tích tam giác ABC biết A = 60°; b = 10; c = 20.
Đáp án đúng là: A
Áp dụng công thức : \[S = \frac{1}{2}.bc.\sin A\]\[ = \frac{1}{2}.10.20.\sin 60^\circ \]\[ = 50\sqrt 3 \].
Câu 9:
14/07/2024Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.
Đáp án đúng là: A
Ta có : \[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\sqrt 6 }^2} + {{(\sqrt 3 + 1)}^2} - {2^2}}}{{2.\sqrt 6 .(\sqrt 3 + 1)}}\]\[ = \frac{{\sqrt 2 }}{2}\]\[ \Rightarrow \]\(\widehat A\) = 45°.
Do đó : \[R = \frac{a}{{2\sin A}}\]\[ = \frac{2}{{2.\sin 45^\circ }}\]\[ = \sqrt 2 \].
Câu 10:
23/07/2024Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng
Đáp án đúng là: C
Ta có \(AC = \sqrt {B{C^2} - A{B^2}} = 8\)(cm).
Diện tích tam giác ABC là:\(S = \frac{1}{2}AB.AC = 24\left( {c{m^2}} \right)\)
Nửa chu vi \(p = \frac{{6 + 8 + 10}}{2} = 12\) (cm)
Suy ra \(r = \frac{S}{p} = \frac{{24}}{{12}} = 2\)(cm).
Câu 11:
17/07/2024Hình bình hành ABCD có AB = a; \(BC = a\sqrt 2 \) và \(\widehat {BAD} = 45^\circ \). Khi đó hình bình hành có diện tích bằng
Đáp án đúng là: C
Gọi BH là đường cao của hình bình hành ABCD.
Tam giác BAH vuông tại H, góc \(\widehat {BAH} = \widehat {BAD} = 45^\circ \),
Ta có BH = AB.sin45° = \(\frac{{a\sqrt 2 }}{2}\).
Diện tích hình bình hành ABCD là: \(S = BH.AD = \frac{{a\sqrt 2 }}{2}.a\sqrt 2 = {a^2}\)(đvdt).
Câu 12:
22/07/2024Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Đáp án đúng là: B
Ta có: a(a2 – c2) = b(b2 – c2)
⇔ a3 – b3 – c2(a – b) = 0
⇔ (a – b)(a2 + ab + b2) – c2(a – b) = 0
⇔ (a – b)(a2 + ab + b2 – c2) = 0
⇔ a2 + ab + b2 – c2 = 0 (Vì a ≠ b nên a – b ≠ 0)
⇔ a2 + b2 – c2 = – ab
Ta có \[\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{ - ab}}{{2ab}}\]\[ = - \frac{1}{2}\].
Do đó: \(\widehat C\) = 120°.
Câu 13:
14/07/2024Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Đáp án đúng là: D
Trong tam giác ABC ta luôn có: c2 = a2 + b2 – 2ab.cosC.
Hệ thức (a + b + c)(a + b – c) = 3ab
⇔ (a + b)2 – c2 = 3ab
⇔ c2 = a2 + b2 – ab
Suy ra: – 2.cosC = – 1 \( \Rightarrow \cos C = \frac{1}{2} \Rightarrow \widehat C = 60^\circ \).
Câu 14:
21/07/2024Tam giác ABC có AB = 7; AC = 5 và \(\cos \left( {B + C} \right) = - \frac{1}{5}\). Tính BC
Đáp án đúng là: A
Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \Leftrightarrow \widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right)\)
\( \Rightarrow \cos \left( {B + C} \right) = \cos \left( {180^\circ - A} \right) = - cosA = - \frac{1}{5}\)
\( \Rightarrow \cos A = \frac{1}{5}\)
Áp dụng định lý côsin trong tam giác, ta có:
\(BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.{\mathop{\rm cosA}\nolimits} } = \sqrt {{7^2} + {5^2} - 2.7.5.\frac{1}{5}} = 2\sqrt {15} \).
Câu 15:
14/07/2024Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Đáp án đúng là: A
Gọi hình bình hành là ABCD, AD = 3, AB = 5
Gọi α là góc đối diện với đường chéo có độ dài 5
Ta có: \(\cos \alpha = \frac{{{3^2} + {5^2} - {5^2}}}{{2.3.5}} = \frac{3}{{10}}\)
⇒ α là góc nhọn
⇒\(\alpha = \widehat {ADC}\)
⇒ AC = 5
⇒\(B{D^2} = A{D^2} + A{B^2} - 2.AD.AB.\cos \widehat {BAD} = A{D^2} + A{B^2} + 2.AD.AB.\cos \widehat {ADC}\)
(vì \(\widehat {BAD}\) và \(\widehat {ADC}\) bù nhau\( \Rightarrow \cos \widehat {BAD} = - \cos \widehat {ADC}\))
⇒ BD2 = 32 + 52 + 2.3.5.\(\frac{3}{{10}}\) = 43
⇒ BD = \(\sqrt {43} \).
Có thể bạn quan tâm
- Trắc nghiệm Toán 10 Bài 6. Hệ thức lượng trong tam giác có đáp án (448 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 6. Hệ thức lượng trong tam giác có đáp án (212 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 6. Hệ thức lượng trong tam giác (phần 2) có đáp án (475 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Toán 10 Bài 6. Bài tập cuối chương 3 có đáp án (503 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 5. Giá trị lượng giác của 1 góc từ 0° đến 180° (phần 2) có đáp án (468 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài ôn tập cuối chương 3 (phần 2) có đáp án (433 lượt thi)
- Trắc nghiệm Toán 10 Bài 5. Giá trị lượng giác của một góc 0 độ đến 180 độ có đáp án (363 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 5. Giá trị lượng giác của một góc 0 độ đến 180 độ có đáp án (230 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 6. Bài tập cuối chương 3 có đáp án (198 lượt thi)