Câu hỏi:
23/07/2024 22,952
Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ – không có điểm đầu và điểm cuối là đỉnh của lục giác.
A. 20.
B. 12.
C. 30.
D. 16.
Trả lời:
Đáp án: C
Giải thích:
Lời giải
Hai điểm phân biệt, chẳng hạn A, B ta xác định được hai vectơ khác vectơ – không là , .
Một vectơ khác vectơ – không được xác định bởi 2 điểm phân biệt. Do đó có 30 cách chọn 2 điểm trong 4 điểm của tứ giác (có tính thứ tự các điểm) nên có thể lập được 30 vectơ.
Đáp án: C
Giải thích:
Lời giải
Hai điểm phân biệt, chẳng hạn A, B ta xác định được hai vectơ khác vectơ – không là , .
Một vectơ khác vectơ – không được xác định bởi 2 điểm phân biệt. Do đó có 30 cách chọn 2 điểm trong 4 điểm của tứ giác (có tính thứ tự các điểm) nên có thể lập được 30 vectơ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 5:
Cho hình bình hành ABCD tâm O. Gọi P, Q, R lần lượt là trung điểm AB, BC, AD. Lấy 8 điểm trên làm điểm gốc hoặc điểm ngọn các vectơ. Tìm mệnh đề sai:
Cho hình bình hành ABCD tâm O. Gọi P, Q, R lần lượt là trung điểm AB, BC, AD. Lấy 8 điểm trên làm điểm gốc hoặc điểm ngọn các vectơ. Tìm mệnh đề sai:
Câu 6:
Cho hình thang ABCD có hai đáy là AB và CD với . Từ C vẽ . Khẳng định nào sau đây là đúng nhất?
Câu 7:
Cho hai điểm phân biệt A, B. Số vectơ ( khác ) có điểm đầu và điểm cuối lấy từ các điểm A, B là:
Câu 9:
Cho khẳng định sau
(1). 4 điểm A, B, C, D là 4 đỉnh của hình bình hành thì .
(2). 4 điểm A, B, C, D là 4 đỉnh của hình bình hành thì .
(3). Nếu thì 4 điểm A, B, C, D là 4 đỉnh của hình bình hành.
(4). Nếu thì 4 điểm A, B, C, D theo thứ tự đó là 4 đỉnh của hình bình hành.
Hỏi có bao nhiêu khẳng định sai?
Cho khẳng định sau
(1). 4 điểm A, B, C, D là 4 đỉnh của hình bình hành thì .
(2). 4 điểm A, B, C, D là 4 đỉnh của hình bình hành thì .
(3). Nếu thì 4 điểm A, B, C, D là 4 đỉnh của hình bình hành.
(4). Nếu thì 4 điểm A, B, C, D theo thứ tự đó là 4 đỉnh của hình bình hành.
Hỏi có bao nhiêu khẳng định sai?