Câu hỏi:
12/07/2024 207Cho hàm số y = f(x) xác định trên đọa [–3; 3] và có đồ thị được biểu diễn như hình bên:
Khẳng định nào sau đây đúng?
A. Hàm số nghịch biến trên (–1; 2);
B. Hàm số đồng biến trên (–3; –1) và (1; 4);
C. Hàm số đồng biến trên (–3; 3);
D. Hàm số đồng biến trên (–3; –1) và (1; 3).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Quan sát đồ thị ta thấy:
⦁ Trên khoảng (–3; –1), đồ thị có dạng đi lên từ trái sang phải nên hàm số đồng biến trên khoảng (–3; –1).
⦁ Trên khoảng (–1; 1), đồ thị có dạng đi xuống từ trái sang phải nên hàm số nghịch biến trên khoảng (–1; 1).
⦁ Trên khoảng (1; 3), đồ thị có dạng đi lên từ trái sang phải nên hàm số đồng biến trên khoảng (1; 3).
Phương án A sai vì hàm số đồng biến trên khoảng (1; 2).
Phương án B sai vì hàm số không xác định trên khoảng (3; 4).
Phương án C sai vì hàm số nghịch biến trên khoảng (–1; 1).
Phương án D đúng.
Vậy ta chọn phương án D.
Hướng dẫn giải
Đáp án đúng là: D
Quan sát đồ thị ta thấy:
⦁ Trên khoảng (–3; –1), đồ thị có dạng đi lên từ trái sang phải nên hàm số đồng biến trên khoảng (–3; –1).
⦁ Trên khoảng (–1; 1), đồ thị có dạng đi xuống từ trái sang phải nên hàm số nghịch biến trên khoảng (–1; 1).
⦁ Trên khoảng (1; 3), đồ thị có dạng đi lên từ trái sang phải nên hàm số đồng biến trên khoảng (1; 3).
Phương án A sai vì hàm số đồng biến trên khoảng (1; 2).
Phương án B sai vì hàm số không xác định trên khoảng (3; 4).
Phương án C sai vì hàm số nghịch biến trên khoảng (–1; 1).
Phương án D đúng.
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ:
Mệnh đề nào dưới đây đúng?
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ:
Mệnh đề nào dưới đây đúng?
Câu 5:
Hàm số y = –x2 + 2x + 3 có đồ thị là hình nào trong các hình sau?
Câu 6:
Xác định các hệ số m, n để parabol (P): y = mx2 + 4x – n (m ≠ 0) có đỉnh S(–1; –5).
Câu 7:
Cho hàm số y = 2x2 – 4x + 3 có đồ thị là parabol (P). Mệnh đề nào sau đây sai?
Câu 8:
Cho hàm số \(f\left( x \right) = \sqrt {2x - 7} \). Khẳng định nào sau đây đúng?
Câu 9:
Xét tính đồng biến, nghịch biến của hàm số \(y = \sqrt[3]{x} + 3\).
Câu 10:
Cho hàm số \[y = h\left( x \right) = \left\{ \begin{array}{l} - 2\left( {{x^2} + 1} \right),\,\,\,khi\,\,x \le 1\\4\sqrt {x - 1} ,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 1\end{array} \right.\]. Khi đó \(h\left( {\frac{{\sqrt 2 }}{2}} \right)\) bằng:
Câu 11:
Giá trị m để đồ thị hàm số y = 2x – m + 6 đi qua điểm H(2; –5) là:
Câu 12:
Điểm nào sau đây thuộc đồ thị hàm số \[y = \frac{{2x - 1}}{{x\left( {3x - 4} \right)}}\]?
Câu 14:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 2x + 1,\,\,\,\,khi\,\,x \le - 3\\\frac{{x + 7}}{2},\,\,\,\,\,\,\,\,khi\,\,x > - 3\end{array} \right.\). Nếu f(x0) = 5 thì x0 bằng: