Câu hỏi:
17/07/2024 781Cho hàm số f(x) = ax2 + bx + c đồ thị như hình. Hỏi với những giá trị nào của tham số thực m thì phương trình |f(x)| = m có đúng 4 nghiệm phân biệt.
A. 0 < m < 1.
B.m > 3.
C.m = −1, m = 3.
D. −1 < m < 0.
Trả lời:
Từ đó suy ra cách vẽ đồ thị hàm số (C) từ đồ thị hàm số y = f(x) như sau:
+ Giữ nguyên đồ thị y = f(x) phía trên trục hoành.
+ Lấy đối xứng phần đồ thị y = f(x) phía dưới trục hoành qua trục hoành (bỏ phần dưới).
Kết hợp hai phần ta được đồ thị hàm số y =| f(x)| như hình vẽ.
Phương trình |f(x)| = m là phương trình hoành độ giao điểm của đồ thị hàm số
y = |f(x)| và đường thẳng y = m (song song hoặc trùng với trục hoành).
Dựa vào đồ thị, ta có yêu cầu bài toán ⇔ 0 < m < 1.
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax2 + bx + c có đồ thị như hình bên. Khẳng định nào sau đây đúng ?
Câu 2:
Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Câu 3:
Nếu hàm số y = ax2 + bx + c có a < 0, b > 0 và c > 0 thì đồ thị của nó có dạng
Câu 4:
Cho hàm số y = ax2 + bx + c có đồ thị như hình bên.
Khẳng định nào sau đây đúng?
Câu 6:
Đồ thị hình vẽ là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Câu 7:
Cho parabol (P): y = −3x2 + 6x − 1. Khẳng định đúng nhất trong các khẳng định sau là:
Câu 8:
Xác định parabol (P): y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Câu 11:
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị lớn nhất bằng 5 tại x = − 2 và có đồ thị đi qua điểm M (1; −1). Tính tổng S = a2 + b2 + c2.
Câu 12:
Cho hàm số y = ax2 + bx + c (a > 0). Khẳng định nào sau đây là sai?
Câu 13:
Cho hàm số y = ax2 + bx + c có đồ thị (P) như hình vẽ.
Khẳng định nào sau đây là sai?
Câu 14:
Tìm giá trị của m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ dương
Câu 15:
Cho hàm số y = ax2 + bx + c có đồ thị như hình bên.
Khẳng định nào sau đây đúng ?