Xét đa thức p(n) = n^2 – n + 41

Lời giải HĐ2 trang 26 sách Chuyên đề Toán lớp 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 364 06/11/2022


Giải Chuyên đề Toán 10 Kết nối tri thức Bài 3: Phương pháp quy nạp toán học

HĐ2 trang 26 Chuyên đề Toán 10: Xét đa thức p(n) = n2 – n + 41.

a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.

b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.

Lời giải:

a) p(1) = 41, p(2) = 43, p(3) = 47, p(4) = 53, p(5) = 61. Do đó p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố.

b) Từ việc p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố ta có thể đưa ra dự đoán p(n) là số nguyên tố với mọi n > 1. Tuy nhiên, khẳng định này là một khẳng định sai. Mặc dù khẳng định này đúng với n = 1, 2,..., 40, nhưng nó lại sai khi n= 41. Thật vậy, với n= 41 ta có p(41) = 412 là hợp số (vì nó chia hết cho 41).

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

HĐ1 trang 26 Chuyên đề Toán 10: Hãy quan sát các đẳng thức sau: 1 = 12...

Luyện tập 1 trang 27 Chuyên đề Toán 10: Chứng minh rằng với mọi số tự nhiên n ≥ 1, ta có: 1+2+3+...+n=nn+12...

Luyện tập 2 trang 28 Chuyên đề Toán 10: Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có đằng thức: an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1)...

Vận dụng trang 30 Chuyên đề Toán 10: Lãi suất gửi tiết kiệm trong ngân hàng thường được tính theo thể thức lãi kép theo định kì...

Bài 2.1 trang 30 Chuyên đề Toán 10: Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên n ≥ 1...

Bài 2.2 trang 30 Chuyên đề Toán 10: Mỗi khẳng định sau là đủng hay sai? Nếu em nghĩ là nó đủng, hãy chứng minh nó...

Bài 2.3 trang 30 Chuyên đề Toán 10: Chứng minh rằng n3 – n + 3 chia hết cho 3 với mọi số tự nhiên n ≥ 1...

Bài 2.4 trang 30 Chuyên đề Toán 10: Chứng minh rằng n2 – n + 41 là số lẻ với mọi số nguyên dương n...

Bài 2.5 trang 30 Chuyên đề Toán 10: Chứng minh rằng nếu x > –1 thì (1 + x)n ≥ 1+ nx với mọi số tự nhiên n...

Bài 2.6 trang 30 Chuyên đề Toán 10: Cho tổng Sn = 11.2+12.3+...+1nn+1...

Bài 2.7 trang 30 Chuyên đề Toán 10: Sử dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥ 4)...

Bài 2.8 trang 30 Chuyên đề Toán 10: Ta sẽ “lập luận” bằng quy nạp toán học đề chỉ ra rằng: “Mọi con mèo đều có cùng màu”...

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 4: Nhị thức newton

Bài tập cuối chuyên đề 2

Bài 5: Elip

Bài 6: Hypebol

Bài 7: Parabol

1 364 06/11/2022


Xem thêm các chương trình khác: