Sách bài tập Toán 9 Bài 1 (Cánh diều): Căn bậc hai và căn bậc ba của số thực

Với giải sách bài tập Toán 9 Bài 1: Căn bậc hai và căn bậc ba của số thực sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 9 Bài 1.

1 379 15/08/2024


Giải SBT Toán 9 Bài 1: Căn bậc hai và căn bậc ba của số thực - Cánh diều

Bài 1 trang 52 SBT Toán 9 Tập 1: Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) Căn bậc hai của 25 là 5.

b) Căn bậc hai của 36 là 6 và –6.

c) Căn bậc hai số học của 0,01 là 0,1.

d) Căn bậc hai số học của 7 là 7.

Lời giải:

a) Ta có: 52 = 25 và (‒5)2 = 25 nên số 5 và ‒5 là căn bậc hai của 25.

Do đó, phát biểu a) là sai.

b) Ta có: 62 = 36 và (‒6)2 = 36 nên số 6 và ‒6 là căn bậc hai của 36.

Do đó, phát biểu b) là đúng.

c) Ta có: 0,12 = 0,01 và 0,1 > 0 nên 0,1 là căn bậc hai số học của 0,01.

Do đó, phát biểu c) là đúng.

d) Do 72=77>0 nên 7 là căn bậc hai số học của 7.

Do đó, phát biểu d) là đúng.

Bài 2 trang 52 SBT Toán 9 Tập 1: Tìm căn bậc hai của:

a) 144;

b) 2,56;

c) 16981.

Lời giải:

a) Do 122 = 144 và (‒12)2 = 144 nên căn bậc hai của 144 có hai giá trị là 12 và ‒12.

Cụ thể, ta có: 144=12144=12.

b) Do 1,62 = 2,56 và (‒1,6)2 = 2,56 nên căn bậc hai của 2,56 có hai giá trị là 1,6 và ‒1,6.

Cụ thể, ta có: 2,56=1,62,56=1,6.

c) Do 1392=169811392=16981 nên căn bậc hai của 16981 có hai giá trị là 139-139

Cụ thể, ta có: 16981=13916981=139.

Bài 3 trang 52 SBT Toán 9 Tập 1: Tìm căn bậc ba của:

a) 343;

b) –0,512;

c) 27125

Lời giải:

a) Ta có: 73 = 343 nên số 7 là căn bậc ba của 343.

b) Ta có: (‒0,8)3 = –0,512 nên số ‒0,8 là căn bậc ba của ‒0,512.

c) Ta có: 353=27125 nên số 35 là căn bậc ba của 27125

Bài 4 trang 52 SBT Toán 9 Tập 1: So sánh:

So sánh Căn bậc hai 41 và 6; Căn bậc hai 0,82 và 0,9

Lời giải:

a) Ta có: 6=36.

Mà 41 > 36 nên 41>36 hay 41>6.

b) Ta có: 0,9=0,81.

Mà 0,82 > 0,81 nên 0,82>0,81 hay 0,82>0,9.

c) Ta có: 67<77=1;76>66=1.

Do đó 67<76 nên 67<76.

d) Ta có: ‒65 < ‒64 nên 653<643.

e) Ta có: 3,03 < 3,3 nên 3,033<3,33.

g) Ta có: (‒8)3 = ‒512; 88833=888.

Mà ‒512 > ‒888 nên 8>8883.

Bài 5 trang 53 SBT Toán 9 Tập 1: Chứng minh:

Chứng minh: (căn bậc hai 2025 - căn bậc hai 2024)(căn bậc hai 2025 + căn bậc hai 2024)=1

Lời giải:

a) Ta có:

2  0252  0242  025+2  024

=2  02522  0242=2  0252  024=1.

Vậy 2  0252  0242  025+2  024=1.

b) Ta có: 331332+33+1=33313=31=2.

Vậy 331332+33+1=2.

c) Ta có:

3223+22=323+22

=32222=342=12=1.

Vậy 3223+22=1.

Bài 6 trang 53 SBT Toán 9 Tập 1: Cho hình thang cân ABCD có AB // CD và AC ⊥ AD. Tính độ dài cạnh AD, biết AB = 5 cm và CD = 11 cm.

Lời giải:

Cho hình thang cân ABCD có AB // CD và AC ⊥ AD. Tính độ dài cạnh AD

Kẻ AH, BK vuông góc với CD lần lượt tại H, K nên AH ⊥ HK, BK ⊥ HK. Do đó AH // BK.

Do AB // CD, mà H, K ∈ CD nên AB // HK.

Xét tứ giác ABKH có AH // BK và AB // HK nên ABKH là hình bình hành.

Lại có AHK^=90° nên ABKH là hình chữ nhật.

Suy ra AH = BK và HK = AB = 5 cm.

Xét ∆ADH (vuông tại H) và ∆BCK (vuông tại K) có:

AD = BC (do ABCD là hình thang cân), AH = BK.

Do đó ∆ADH = ∆BCK (cạnh huyền – cạnh góc vuông).

Suy ra DH = CK (hai cạnh tương ứng).

Mà DH + HK + CK = CD

Nên DH=CK=CDHK2=1152=3  (cm).

Xét ∆ACD và ∆HAD có:

DAC^=DHA^=90°ACD^ là góc chung.

Do đó ∆ACD ᔕ ∆HAD (g.g)

Suy ra CDAD=ADHD hay AD2 = CD.HD.

Vì vậy, AD=CDHD=113=33  cm.

Bài 7 trang 53 SBT Toán 9 Tập 1: Cho Hình 1 có OA = AB = BC = CD = DE = EG = 2 cm và OAB^=OBC^=OCD^=ODE^=OEG^=90°. Tính độ dài các cạnh OB, OC, OD, OE, OG.

Cho Hình 1 có OA = AB = BC = CD = DE = EG = 2 cm

Lời giải:

Áp dụng định lí Pythagore cho tam giác OAB vuông tại A, ta có:

OB2 = OA2 + AB2 = 22 + 22 = 8.

Tương tự, áp dụng định lý Pythagore cho các tam giác vuông OBC, OCD, ODE, OEG ta có:

OC2 = OB2 + BC2 = 8 + 22 = 12;

OD2 = OC2 + CD2 = 12 + 22 = 16;

OE2 = OD2 + DE2 = 16 + 22 = 20;

OG2 = OE2 + EG2 = 20 + 22 = 24.

Suy ra: OG=24=26  (cm).

Bài 8 trang 53 SBT Toán 9 Tập 1: Trên một đoạn sông, tốc độ dòng chảy của nước ở bề mặt sông lớn hơn tốc độ dòng chảy của nước ở đáy sông. Gọi v (km/h) là tốc độ dòng chảy của nước ở bề mặt sông và f (km/h) là tốc độ dòng chảy của nước ở đáy sông. Khi đó, ta có công thức: f=v1,3.

a) Tính tốc độ dòng chảy của nước ở đáy sông, biết tốc độ dòng chảy của nước ở bề mặt sông là 9 km/h.

b) Tính tốc độ dòng chảy của nước ở bề mặt sông, biết tốc độ dòng chảy của nước ở đáy sông là 20,25 km/h.

Lời giải:

a) Thay v = 9 (km/h) vào f=v1,3, ta được:

f=91,3=31,3=1,7.

Suy ra f = 1,72 = 2,89 (km/h).

Vậy tốc độ dòng chảy của nước ở đáy sông khi đó là 29 km/h.

b) Thay f = 20,25 km/h vào f=v1,3, ta được:

20,25=v1,3

Suy ra 4,5=v1,3 nên v=5,8, do đó v = 5,82 = 33,64.

Vậy tốc độ dòng chảy của nước ở bề mặt sông khi đó là 33,64 km/h.

Bài 9 trang 53 SBT Toán 9 Tập 1: Cho một hình hộp chữ nhật có các kích thước là 4,8 dm, 3 dm, 15 dm và một hình lập phương có cùng thể tích với hình hộp chữ nhật đó. Tính độ dài cạnh của hình lập phương.

Lời giải:

Thể tích của hình hộp chữ nhật là:

4,8.3.15 = 216 (dm3).

Gọi a (dm) là độ dài cạnh của hình lập phương với a > 0. Khi đó, thể tích của hình lập phương đó là a3 (dm3).

Khi đó, ta có: a3 = 216.

Suy ra a=2163=6  (dm).

Bài 10 trang 53 SBT Toán 9 Tập 1: Hàng ngày, hai anh em An và Bình cùng đi bộ từ nhà ở vị trí A đến trường. Trường của anh An ở vị trí B và trường của em Bình ở vị trí C theo hai hướng vuông góc với nhau (Hình 2). Anh An đi với tốc độ 4 km/h và đến trường sau 15 phút. Em Bình đi với tốc độ 3 km/h và đến trường sau 12 phút. Tính khoảng cách BC giữa hai trường (làm tròn kết quả đến hàng phần trăm của mét).

Hàng ngày, hai anh em An và Bình cùng đi bộ từ nhà ở vị trí A đến trường

Lời giải:

Đổi 15 phút = 14 giờ; 12 phút = 15 giờ.

Quãng đường anh An đi từ nhà đến trường là: 414=1  (km).

Quãng đường em Bình đi từ nhà đến trường là: 31260=0,6  (km)

Do tam giác ABC vuông tại A nên theo định lí Pythagore, ta có:

BC2 = AB2 + AC2 = 12 + (0,6)2 = 1,36.

Do đó BC=1,361,17  (km).

Vậy khoảng cách BC giữa hai trường xấp xỉ 1,7 km.

Xem thêm Lời giải bài tập Toán 9 sách Cánh diều hay, chi tiết khác:

Bài 2: Một số phép tính về căn bậc hai của số thực

Bài 3: Căn thức bậc hai và căn thức bậc ba của biểu thức đại số

Bài 4: Một số phép biến đổi căn thức bậc hai của biểu thức đại số

Bài tập cuối chương 3

Bài 1: Tỉ số lượng giác của góc nhọn

1 379 15/08/2024