Trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Phần 2) có đáp án
Trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Phần 2) có đáp án (Vận dụng)
-
909 lượt thi
-
5 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
23/07/2024Phương trình chính tắc của elip có một tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) và đi qua điểm \(M\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) là:
Hướng dẫn giải
Đáp án đúng là: C
Ta có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\). Suy ra \(c = \sqrt 3 \).
Khi đó c2 = 3.
Vì vậy a2 – b2 = 3.
Do đó a2 = b2 + 3.
Phương trình chính tắc của (E) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (a > b > 0).
Ta có \(M\left( {1;\frac{{\sqrt 3 }}{2}} \right) \in \left( E \right)\).
Suy ra \(\frac{{{1^2}}}{{{a^2}}} + \frac{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}{{{b^2}}} = 1\)
\( \Leftrightarrow \frac{1}{{{a^2}}} + \frac{3}{{4{b^2}}} = 1\)
⇔ 4b2 + 3a2 = 4a2b2
⇔ 4b2 + 3(b2 + 3) = 4b2(b2 + 3)
⇔ 4b4 + 5b2 – 9 = 0
⇔ b2 = 1 hoặc \({b^2} = - \frac{9}{4}\) (vô lí)
⇔ b = 1.
Với b = 1, ta có a2 = 12 + 3 = 4.
Vậy phương trình chính tắc của (E): \(\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\).
Do đó ta chọn phương án C.
Câu 2:
23/07/2024Cho hypebol (H): \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) và đường thẳng ∆: x + y = 3. Tích các khoảng cách từ hai tiêu điểm của (H) đến ∆ bằng giá trị nào sau đây?
Hướng dẫn giải
Đáp án đúng là: B
Phương trình chính tắc của (H) có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với \(\left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 9\end{array} \right.\)
Ta có c2 = a2 + b2 = 16 + 9 = 25.
Suy ra c = 5.
Khi đó hai tiêu điểm của (H) là F1(–5; 0), F2(5; 0).
Ta có ∆: x + y = 3 ⇔ x + y – 3 = 0.
Ta có \(d\left( {{F_1},\Delta } \right) = \frac{{\left| { - 5 + 0 - 3} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2 \) và \[d\left( {{F_2},\Delta } \right) = \frac{{\left| {5 + 0 - 3} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2 \].
Khi đó tích các khoảng cách từ hai tiêu điểm của (H) đến ∆ là: \(4\sqrt 2 .\sqrt 2 = 8\).
Vậy ta chọn phương án B.
Câu 3:
19/07/2024Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(2; –2) là:
Hướng dẫn giải
Đáp án đúng là: C
Ta có 2a gấp đôi 2b. Suy ra 2a = 4b.
Khi đó a = 2b.
Phương trình chính tắc của (H) có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a > 0, b > 0.
Ta có M(2; –2) ∈ (E).
Suy ra \(\frac{{{2^2}}}{{{a^2}}} - \frac{{{{\left( { - 2} \right)}^2}}}{{{b^2}}} = 1\)
⇔ 4b2 – 4a2 = a2b2
⇔ 4b2 – 4.(2b)2 = (2b)2.b2
⇔ 4b4 – 12b2 = 0
⇔ b2 = 0 hoặc b2 = 3
⇔ b = 0 hoặc \(b = \sqrt 3 \)
Vì b > 0 nên ta loại b = 0.
Với \[b = \sqrt 3 \], ta có \(a = 2\sqrt 3 \).
Vậy phương trình chính tắc của (H): \(\frac{{{x^2}}}{{12}} - \frac{{{y^2}}}{3} = 1\).
Do đó ta chọn phương án C.
Câu 4:
21/07/2024Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Đường thẳng d: x = –4 cắt (E) tại hai điểm M, N. Khi đó:
Hướng dẫn giải
Đáp án đúng là: C
Tọa độ giao điểm của đường thẳng d và elip (E) thỏa mãn hệ phương trình: \[\left\{ \begin{array}{l}x = - 4\\\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\]
\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\\frac{{{{\left( { - 4} \right)}^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\{y^2} = \frac{{81}}{{25}}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = \pm \frac{9}{5}\end{array} \right.\)
Suy ra tọa độ \(M\left( { - 4; - \frac{9}{5}} \right),\,\,N\left( { - 4;\frac{9}{5}} \right)\).
Khi đó \(MN = \sqrt {{{\left( { - 4 + 4} \right)}^2} + {{\left( {\frac{9}{5} + \frac{9}{5}} \right)}^2}} = \frac{{18}}{5}\).
Vậy ta chọn phương án C.
Câu 5:
23/07/2024Tọa độ điểm A thuộc parabol (P): y2 = 32x và đường thẳng ∆: 2x – 3y + 4 = 0 là:
Hướng dẫn giải
Đáp án đúng là: A
Tọa độ giao điểm của (P) và ∆ thỏa hệ phương trình: \(\left\{ \begin{array}{l}{y^2} = 32x\\2x - 3y + 4 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 32x\\2x = 3y - 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 32x\\x = \frac{3}{2}y - 2\end{array} \right.\)
\[ \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 32.\left( {\frac{3}{2}y - 2} \right) = 48y - 64\\x = \frac{3}{2}y - 2\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{y^2} - 48y + 64 = 0\\x = \frac{3}{2}y - 2\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}y = 24 \pm 16\sqrt 2 \\x = \frac{3}{2}y - 2\end{array} \right.\]
Với \(y = 24 + 16\sqrt 2 \), ta có \(x = \frac{3}{2}.\left( {24 + 16\sqrt 2 } \right) - 2 = 34 + 24\sqrt 2 \)
Suy ra \(A\left( {34 + 24\sqrt 2 ;24 + 16\sqrt 2 } \right)\).
Với \(y = 24 - 16\sqrt 2 \), ta có \(x = \frac{3}{2}.\left( {24 - 16\sqrt 2 } \right) - 2 = 34 - 24\sqrt 2 \)
Suy ra \(A\left( {34 - 24\sqrt 2 ;24 - 16\sqrt 2 } \right)\).
Vậy \(A\left( {34 + 24\sqrt 2 ;24 + 16\sqrt 2 } \right)\) hoặc \(A\left( {34 - 24\sqrt 2 ;24 - 16\sqrt 2 } \right)\) là tọa độ A cần tìm.
Do đó ta chọn phương án A.
Bài thi liên quan
-
Trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Phần 2) có đáp án (Nhận biết)
-
7 câu hỏi
-
30 phút
-
-
Trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Phần 2) có đáp án (Thông hiểu)
-
8 câu hỏi
-
30 phút
-
Có thể bạn quan tâm
- Trắc nghiệm Toán 10 Bài 6. Ba đường Conic có đáp án (264 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Phần 2) có đáp án (908 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường tròn (Phần 2) có đáp án (932 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Phần 2) có đáp án (861 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Phần 2) có đáp án (686 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳng (Phần 2) có đáp án (546 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 7. Bài tập cuối chương 7 (Phần 2) có đáp án (525 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Phần 2) có đáp án (476 lượt thi)
- Trắc nghiệm Toán 10 Bài ôn tập cuối chương 7 có đáp án (317 lượt thi)
- Trắc nghiệm Toán 10 Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng có đáp án (282 lượt thi)
- Trắc nghiệm Toán 10 Bài 3. Phương trình đường thẳng có đáp án (260 lượt thi)
- Trắc nghiệm Toán 10 Bài 2. Biểu thức toạ độ của các phép toán vectơ có đáp án (248 lượt thi)