Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức (Vận dụng)
Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức (Vận dụng)
-
255 lượt thi
-
10 câu hỏi
-
50 phút
Danh sách câu hỏi
Câu 1:
22/07/2024Cho 9a2 – (a – 3b)2 = (m.a + n.b)(4a – 3b) với m, n R. Khi đó, giá trị của m và n là
Ta có 9a2 – (a – 3b)2 = (3a)2 – (a – 3b)2
= (3a + a – 3b)(3a – a + 3b)
= (4a – 3b)(2a + 3b)
Suy ra m = 2; n = 3
Đáp án cần chọn là: D
Câu 2:
22/07/2024Cho x + n = 2(y – m), khi đó giá trị của biểu thức A = x2 – 4xy + 4y2 – 4m2 – 4mn – n2 bằng
Ta có A = x2 – 4xy + 4y2 – 4m2 – 4mn – n2
= x2 – 2x.2y + (2y)2 – (4m2 + 4mn + n2)
= (x – 2y)2 – (2m + n)2
= (x – 2y + 2m + n)(x – 2y – 2m – n)
Ta có x + n = 2(y – m)
x + n = 2y – 2m
x – 2y + n + 2m = 0
Thay x – 2y + n + 2m = 0 vào A ta được
A = 0.(x – 2y – 2m – n) = 0
Vậy A = 0
Đáp án cần chọn là: B
Câu 3:
22/07/2024Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
Gọi hai số lẻ liên tiếp là 2k – 1; 2k + 1 (k N*)
Theo bài ra ta có
(2k + 1)2 – (2k – 1)2 = 4k2 + 4k + 1 – 4k2 + 4k – 1 = 8k ⁝ 8
Đáp án cần chọn là: A
Câu 4:
22/07/2024Có bao nhiêu cặp số nguyên (x; y) thỏa mãn x2 + 102 = y2
Ta có x2 + 102 = y2 y2 – x2 = 102
Nhận thấy hiệu hai bình phương là một số chẵn nên x, y cùng là số chẵn hoặc cùng là số lẻ
Suy ra y – x; y + x luôn là số chẵn
Lại có y2 – x2 = 102 (y – x)(y + x) = 102
Mà (y – x) và (y + x) cùng là số chẵn.
Suy ra (y – x)(y + x) chia hết cho 4 mà 102 không chia hết cho 4 nên không tồn tại cặp số x; y thỏa mãn đề bài
Đáp án cần chọn là: A
Câu 8:
22/07/2024Cho (x2 + y2 – 17)2 – 4(xy – 4)2 = (x + y + 5)(x – y + 3)(x + y + m)(x – y + n). Khi đó giá trị của m.n là
Ta có
(x2 + y2 – 17)2 – 4(xy – 4)2 = (x2 + y2 – 17)2 – [2(xy – 4)]2
= (x2 + y2 – 17 + 2xy – 8)(x2 + y2 – 17 – 2xy + 8)
= (x2 + y2 + 2xy – 25)(x2 + y2 – 2xy – 9)
= [(x + y)2 – 52][(x – y)2 – 32]
= (x + y + 5)(x + y – 5)(x – y + 3)(x – y – 3)
Suy ra m = -5; n = -3 => m.n = (-5).(-3) = 15
Đáp án cần chọn là: D
Câu 9:
22/07/2024Cho (x + y)3 – (x – y)3 = A.y(Bx2 + Cy2), biết A, B, C là các số nguyên. Khi đó A + B + C bằng
Ta có (x + y)3 – (x – y)3
= [x + y – (x – y)][(x + y)2 + (x + y)(x – y) + (x – y)2]
= (x + y – x + y)(x2 + 2xy + y2 + x2 – y2 + x2 – 2xy + y2)
= 2y(3x2 + y2) => A = 2; B = 3; C = 1
Suy ra A + B + C = 2 + 3 + 1 = 6
Đáp án cần chọn là: C
Câu 10:
22/07/2024Cho x6 – 1 = (x + A)(x + B)(x4 + x2 + C), biết A, B, C là các số nguyên. Khi đó A + B + C bằng
Ta có x6 – 1 = (x2)3 – 1 = (x2 – 1)(x4 + x2 + 1)
= (x – 1)(x + 1)(x4 + x2 + 1)
=> A = -1; B = C = 1
Suy ra A + B + C = -1 + 1 + 1 = 1
Đáp án cần chọn là: B
Có thể bạn quan tâm
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp hằng đẳng thức (có đáp án) (271 lượt thi)
- Phân tích đa thức thành nhân tử bằng cách dung hằng đẳng thức đáng nhớ (có lời giải chi tiết) (276 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức (Nhận biết) (220 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức (Thông hiểu) (228 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức (Vận dụng) (254 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Nhân đơn thức với đa thức (có đáp án) (1059 lượt thi)
- Bài tập: Phân tích đa thức thành nhân tử (có lời giải chi tiết) (768 lượt thi)
- Trắc nghiệm Những hằng đẳng thức đáng nhớ (có đáp án) (533 lượt thi)
- Bài tập Nhân đơn thức với đa thức (có lời giải chi tiết) (471 lượt thi)
- Trắc nghiệm Chia đơn thức cho đơn thức (có đáp án) (466 lượt thi)
- Bài tập Chia đa thức một biến đã sắp xếp (457 lượt thi)
- Trắc nghiệm Chia đa thức cho một biến đã sắp xếp (có đáp án) (399 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung (có đáp án) (374 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (có đáp án) (357 lượt thi)
- Trắc nghiệm Chia đa thức cho đơn thức (có đáp án) (347 lượt thi)