Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 6)
-
12498 lượt thi
-
50 câu hỏi
-
90 phút
Danh sách câu hỏi
Câu 1:
20/07/2024Hình hộp chữ nhật đứng đáy là hình thoi có bao nhiêu mặt phẳng đối xứng?
Đáp án C
Có 3 mặt phẳng đối xứng như trong hình vẽ sau:
Câu 12:
05/12/2024Cho số phức z thỏa mãn Môđun của số phức z bằng
Đáp án đúng: B
*Lời giải:
*Phương pháp giải:
Áp dụng công thức tính modun số phức để tính
*Lý thuyến cần nắm và các dạng bài toán về
1. Số i.
Số i là số thỏa mãn: i2 = –1.
2. Định nghĩa số phức
Mỗi biểu thức dạng a + bi , trong đó a;b∈Ra;b∈R; i2 = –1 được gọi là một số phức.
Đối với số phức z = a + bi, ta nói: a là phần thực, b là phần ảo của z.
Tập hợp các số phức kí hiệu là C.
3. Số phức bằng nhau
– Định nghĩa : Hai số phức bằng nhau nếu phần thực và phần ảo của chúng tương ứng bằng nhau :
a + bi = c + di a = c và b = d.
– Chú ý :
a) Mỗi số thực a được coi là một số phức với phần ảo bằng 0: a = a + 0i.
Như vậy, mỗi số thực cũng là một số phức. Ta có : R⊂CR⊂C.
b) Số phức 0 + bi được gọi là số thuần ảo và viết đơn giản là bi : bi = 0 + bi
Đặc biệt : i = 0 + 1.i
Số i được gọi là đơn vị ảo.
4. Biểu diễn hình học số phức
Điểm M(a ; b) trong một hệ tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức z = a + bi.
5. Mô đun của số phức.
Giả sử số phức z = a + bi được biểu diễn bởi điểm M(a ; b) trên mặt phẳng tọa độ.
Độ dài của vecto −−→OM−−→OM được gọi là môđun của số phức z và kí hiệu là |z|.
Vậy |z|=∣∣∣−−→OM∣∣∣ |z|=∣∣∣−−→OM∣∣∣ hay |a+bi|=∣∣∣−−→OM∣∣∣|a+bi|=∣∣∣−−→OM∣∣∣.
Ta thấy: |a+bi|=√a2+b2
6. Số phức liên hợp
– Định nghĩa : Cho số phức z = a + bi. Ta gọi a – bi là số phức liên hợp của z và kí hiệu là ¯z=a−bi¯z=a−bi.
– Nhận xét :
+ Trên mặt phẳng tọa độ các điểm biểu diễn z và ¯z¯z đối xứng nhau qua trục Ox.
+ Từ định nghĩa ta có: ¯¯z=z;|¯z|=|z|¯¯z=z;|¯z|=|z|.
Các dạng bài tập số phức và cách giải
Dạng 1: Các dạng quỹ tích đơn giản căn bản
Đường thẳng: Quỹ tích các điểm M biểu diễn số phức z = x +yi là đường thẳng nếu như M (x;y) có tọa độ thỏa mãn phương trình đường thẳng: Ãx +By + C = 0
Đường tròn: QUỹ tích các điểm M biểu diễn số phức z = x + yi là đường tròn nếu như M(x; y) có tọa độ thỏa mãn phương trình đường tròn (C) : (x - a)2 + (b -y)2 = R2. Trong đó thì I (a; b) là tâm đường trong và R là bán kính đường tròn.
Đường elip: quỹ tích các điểm M biểu diễn số phức z = x +yi là đường elip nếu như M(x; y) có tọa độ thỏa mãn phương trình đường elip (E): x2a2+y2b2x2a2+y2b2 = 1 trong đó thì a,b tương ứng với các bán trục lớn và bán trục nhỏ của elip
Dạng 2: Các dạng bài tập tìm phần thực hoặc tìm phần ảo của số phức
Ta biến đổi số phưc đã cho thành z = a + bi trong đó thì a và b là các số thực. Khi đó a là phần thực của z, còn b là phần ảo của z. Chú ý các bài toán về số phwusc mà hỏi về phần ảo người ta hay có phương án nhiễu nhiều.
Dạng 3: Dạng bài tập có số phức mũ cao
Cách tính số phức mũ cao là sử dụng dạng lượng giác hoặc dạng mũ của số phức. Với dạng lượng giác của số phức ta áp dụng công thức sau:
Dạng 4: Các dạng bài tập số phức liên quan đến phương trình bậc 2 với hệ số thực
Với phương trình bậc 2 hệ số thực trên tập số phức ta chia làm 2 nhóm: Nhóm bài tập liên quan đến việc tìm nghiệm và nhóm các bài tập liên quan đến định lý vi-et. Thông thường với phương trình không có tham số ta sử dụng máy tính bỏ túi để tính ra kết quả, còn nếu có tham số thì ta tính delta và thay vào công thức nghiệm hoặc sử dụng định lý vi-et
Xem thêm các bài viết liên quan hay, chi tiết
Lý thuyết Số phức (mới 2024 + Bài Tập) – Toán 12
Câu 42:
13/07/2024Một giải thi đấu bóng đá quốc gia có 12 đội bóng thi đấu vòng tròn hai lượt tính điểm (2 đội bất kì thi đấu với nhau đúng 2 trận). Sau mỗi trận đấu, đội thắng 3 điểm, đội thua 0 điểm, nếu hòa mỗi đội được 1 điểm. Sau giải đấu ban tổ chức thống kê được 60 trận hòa. Hỏi tổng số điểm của tất cả các đội sau giải đấu là
Đáp án A
Vì 12 đội bóng thi đấu vòng tròn hai lượt tính điểm (2 đội bất kì thi đấu với nhau đúng 2 trận) nên mỗi đội sẽ thi đấu với 11 đội còn lại, do đó tổng số trận đấu là 12.11 = 132 (trận).
Số trận hòa là 16 trận, số trận không hòa là 132 - 60 = 72.
60 trận hòa, mỗi đội được 1 điểm, vậy có 120 điểm.
72 trận không hòa, mỗi trận đội thắng được 3 điểm, vậy có 72.3 = 216 điểm.
Vậy tổng số điểm của tất cả các đội sau giải đấu là 120 + 126 = 336.
Bài thi liên quan
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 1)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 2)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 3)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 4)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 5)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 7)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (đề 8)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (đề 9)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (đề 10)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (đề 11)
-
50 câu hỏi
-
90 phút
-