Câu hỏi:
13/07/2024 154
Trong các hàm số sau, hàm số nào đồng biến trên khoảng (–1; 0) ?
A. y = x;
Đáp án chính xác
B. \(y = \frac{1}{x}\);
C. y = |x|;
D. y = x2.
Trả lời:
Giải bởi Vietjack
Hướng dẫn giải:
Đáp án đúng là: A.
Xét hàm số y = x có tập xác định D = ℝ
Cho x1, x2 tùy ý thuộc (–1; 0) sao cho x1 > x2 ta có: f(x1) – f(x2) = x1 – x2
Ta có: x1 > x2 ⇒ x1 – x2 > 0 ⇒ f(x1) – f(x2) > 0 ⇒ f(x1) > f(x2)
Do đó, khi x1 > x2 thì f(x1) > f(x2).
Vậy hàm số đồng biến trên (–1; 0).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \(f(x) = \frac{4}{{x + 1}}\). Khẳng định nào sau đây là đúng ?
Xem đáp án »
19/07/2024
161
Câu 4:
Cho hàm số có đồ thị như hình dưới:
Xét tính đồng biến, nghịch biến của hàm số trên các khoảng (–3; –2), (–2; 5), (5; 7).
Cho hàm số có đồ thị như hình dưới:
Xét tính đồng biến, nghịch biến của hàm số trên các khoảng (–3; –2), (–2; 5), (5; 7).
Xem đáp án »
21/07/2024
131
Câu 5:
Xét sự biến thiên của hàm số f(x) = 3x trên khoảng (0; +∞). Khẳng định nào sau đây đúng ?
Xem đáp án »
22/07/2024
131
Câu 6:
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là sai ?
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là sai ?
Xem đáp án »
13/07/2024
129
Câu 7:
Xét tính đồng biến, nghịch biến của hàm số y = –0,5x. Khẳng định nào sau đây là sai:
Xem đáp án »
13/07/2024
126
Câu 8:
Xét tính đồng biến, nghịch biến của hàm số y = –0,5x. Khẳng định nào sau đây là sai:
Xem đáp án »
21/07/2024
121
Câu 9:
Xét tính đồng biến, nghịch biến của hàm số y = f(x) = x2 trên khoảng (–∞; 0).
Xem đáp án »
13/07/2024
117
Câu 10:
Xét tính đồng biến, nghịch biến của hàm số f(x) = 4x + 5 trên khoảng (–∞; 2) và trên khoảng (2; +∞). Khẳng định nào sau đây đúng ?
Xem đáp án »
13/07/2024
116
Câu 11:
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là đúng ?
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là đúng ?
Xem đáp án »
18/07/2024
116
Câu 12:
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là đúng ?
Cho hàm số có đồ thị như hình dưới:
Khẳng định nào dưới đây là đúng ?
Xem đáp án »
13/07/2024
115