Câu hỏi:
22/11/2024 144Trong các hàm số sau đây, hàm số nào là hàm số bậc hai?
A. f(x) = 3x2 + 2x – 5;
B. f(x) = 2x – 4;
C. f(x) = 3x3 + 2x – 1;
D. f(x) = x4 – x2 + 1.
Trả lời:
Đáp án đúng là: A
Lời giải
Hàm số bậc hai có dạng y = ax2 + bx + c, với a ≠ 0.
Ta thấy hàm số ở phương án A có dạng như trên với a = 3, b = 2 và c = –5; nên hàm số ở phương án A là hàm số bậc hai.
Hàm số ở phương án B có dạng y = ax + b nên đây là hàm số bậc nhất.
Hàm số ở phương án C có chứa x3 nên đây không phải hàm số bậc hai.
Hàm số ở phương án D có chứa x4 nên đây không phải hàm số bậc hai.
Vậy ta chọn phương án A.
*Phương pháp giải:
Hàm số bậc hai có dạng y = ax2 + bx + c, với a ≠ 0.
*Lý thuyết:
1. Khái niệm hàm số bậc hai
Hàm số bậc hai là hàm số cho bởi công thức y = ax2 + bx + c, trong đó x là biến số, a, b, c là các hằng số và a ≠ 0.
Tập xác định của hàm số bậc hai là ℝ.
Nhận xét : Hàm số y = ax2 (a ≠ 0) đã học ở lớp 9 là một trường hợp đặc biệt của hàm số bậc hai với b = c = 0.
Ví dụ:
a) Hàm số y = 2x2 + x – 1 là hàm số bậc hai với a = 2, b = 1, c = –1.
b) Hàm số y = – x2 cũng là hàm số bậc hai với a = –1 và b = c = 0.
2. Đồ thị của hàm số bậc hai
- Đồ thị của hàm số bậc hai là một parabol.
- Đồ thị hàm số y = ax2 + bx + c (a ≠ 0) là một đường parabol có đỉnh là điểm , có trục đối xứng là đường thẳng . Parabol này quay bề lõm lên trên nếu a > 0, xuống dưới nếu a < 0.
- Để vẽ đường parabol y = ax2 + bx + c ta tiến hành theo các bước sau :
1. Xác định tọa độ đỉnh ;
2. Vẽ trục đối xứng ;
3. Xác định tọa độ các giao điểm của parabol với trục tung, trục hoành (nếu có) và một vài điểm đặc biệt trên parabol ;
4. Vẽ parabol.
Nhận xét : Từ đồ thị hàm số y = ax2 + bx + c (a ≠ 0), ta suy ra tính chất của hàm số y = ax2 + bx + c (a ≠ 0):
Với a > 0 |
Với a < 0 |
Hàm số nghịch biến trên khoảng ; Hàm số đồng biến trên khoảng ; là giá trị nhỏ nhất của hàm số. |
Hàm số đồng biến trên khoảng ; Hàm số nghịch biến trên khoảng ; là giá trị lớn nhất của hàm số. |
Xem thêm
Lý thuyết Hàm số bậc hai - Toán 10 Kết nối tri thức
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ:
Đặt ∆ = b2 – 4ac. Tìm dấu của a và ∆.
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ:
Đặt ∆ = b2 – 4ac. Tìm dấu của a và ∆.
Câu 2:
Trục đối xứng của parabol y = –x2 + 5x + 3 là đường thẳng có phương trình:
Câu 3:
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình bên:
Trục đối xứng của đồ thị hàm số trên là đường thẳng: