Câu hỏi:
22/07/2024 104
Tập xác định của hàm số \(y = f\left( x \right) = \frac{{{x^2} - \sqrt {2 - x} }}{{\left( {{x^2} - x} \right)\sqrt {x + 1} }}\) là:
A. D = (–1; 2] \ {0; 1};
B. D = (–1; 2];
C. D = (–1; 2] \ {0};
D. D = (–1; 2] \ {1}.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Biểu thức f(x) có nghĩa khi và chỉ khi \(\left\{ \begin{array}{l}2 - x \ge 0\\{x^2} - x \ne 0\\x + 1 > 0\end{array} \right.\).
Tức là, \(\left\{ \begin{array}{l}x \le 2\\\left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\\x > - 1\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l} - 1 < x \le 2\\\left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\end{array} \right.\)
Do đó tập xác định của hàm số đã cho là D = (–1; 2] \ {0; 1}.
Vậy ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Biểu thức f(x) có nghĩa khi và chỉ khi \(\left\{ \begin{array}{l}2 - x \ge 0\\{x^2} - x \ne 0\\x + 1 > 0\end{array} \right.\).
Tức là, \(\left\{ \begin{array}{l}x \le 2\\\left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\\x > - 1\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l} - 1 < x \le 2\\\left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\end{array} \right.\)
Do đó tập xác định của hàm số đã cho là D = (–1; 2] \ {0; 1}.
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của tham số m ∈ [–3; 3] để hàm số f(x) = (m + 1)x + m – 2 đồng biến trên ℝ?
Câu 2:
Gia đình bạn Hoa thuê nhà với giá 5 triệu đồng/tháng và gia đình bạn Hoa phải trả tiền dịch vụ là 1 triệu đồng (tiền dịch vụ chỉ trả một lần khi kết thúc hợp đồng thuê nhà). Gọi x (tháng) là khoảng thời gian gia đình bạn Hoa làm hợp đồng thuê nhà, y (đồng) là số tiền gia đình bạn Hoa cần chi ra trong x tháng. Em hãy viết công thức liên hệ giữa y và x.