Câu hỏi:

21/07/2024 187

Có bao nhiêu giá trị nguyên của tham số m [–3; 3] để hàm số f(x) = (m + 1)x + m – 2 đồng biến trên ℝ?

A. 7;

B. 5;

C. 4;

Đáp án chính xác

D. 3.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Hàm số đã cho có tập xác định D = ℝ.

Vì hàm số đồng biến trên ℝ nên ta có x1, x2 D, x1 < x2, suy ra f(x1) < f(x2).

Tức là, (m + 1)x1 + m – 2 < (m + 1)x2 + m – 2.

Do đó (m + 1)(x1 – x2) < 0 (1)

Vì x1 < x2 nên x1 – x2 < 0.

Khi đó (1) tương đương với: m + 1 > 0 hay m > –1.

Mà m [–3; 3] và m nhận giá trị nguyên.

Nên ta có m {0; 1; 2; 3}.

Vậy có 4 giá trị nguyên m thỏa yêu cầu bài toán.

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gia đình bạn Hoa thuê nhà với giá 5 triệu đồng/tháng và gia đình bạn Hoa phải trả tiền dịch vụ là 1 triệu đồng (tiền dịch vụ chỉ trả một lần khi kết thúc hợp đồng thuê nhà). Gọi x (tháng) là khoảng thời gian gia đình bạn Hoa làm hợp đồng thuê nhà, y (đồng) là số tiền gia đình bạn Hoa cần chi ra trong x tháng. Em hãy viết công thức liên hệ giữa y và x.

Xem đáp án » 20/07/2024 128

Câu 2:

Tìm m để hàm số \(y = \frac{{\sqrt {x - 2m + 3} }}{{x - m}} + \frac{{3x - 1}}{{\sqrt { - x + m + 5} }}\) xác định trên khoảng (0; 1).

Xem đáp án » 10/07/2024 124

Câu 3:

Biết rằng hàm số y = f(x) = x3 + 2x + 1 đồng biến trên ℝ. Đặt \(A = {\left( {\frac{{{x^2} + 3}}{{{x^2} + 1}}} \right)^3} + 2\left( {\frac{{{x^2} + 3}}{{{x^2} + 1}}} \right)\) và \(B = \frac{8}{{{{\left( {{x^2} + 1} \right)}^3}}} + \frac{4}{{{x^2} + 1}}\). Khẳng định nào sau đây đúng?

Xem đáp án » 10/07/2024 122

Câu 4:

Tập xác định của hàm số \(y = f\left( x \right) = \frac{{{x^2} - \sqrt {2 - x} }}{{\left( {{x^2} - x} \right)\sqrt {x + 1} }}\) là:

Xem đáp án » 22/07/2024 108

Câu hỏi mới nhất

Xem thêm »
Xem thêm »