Câu hỏi:
18/07/2024 4,780
Khai triển nhị thức (2x + 3)4 ta được kết quả là
Khai triển nhị thức (2x + 3)4 ta được kết quả là
A. x4 + 216x3 + 216x2 + 96x + 81;
A. x4 + 216x3 + 216x2 + 96x + 81;
B. 16x4 + 216x3 + 216x2 + 96x + 81;
B. 16x4 + 216x3 + 216x2 + 96x + 81;
C. 16x4 + 96x3 + 216x2 + 216x + 81;
D. x4 + 96x3 + 216x2 + 216x + 81.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Khai triển nhị thức
(2x + 3)4 = (2x)4(3)0 + (2x)3(3)1 + (2x)2(3)2 + (2x)1(3)3 + (2x)0(3)4 = 16x4 + 96x3 + 216x2 + 216x + 81.
Hướng dẫn giải
Đáp án đúng là: C
Khai triển nhị thức
(2x + 3)4 = (2x)4(3)0 + (2x)3(3)1 + (2x)2(3)2 + (2x)1(3)3 + (2x)0(3)4 = 16x4 + 96x3 + 216x2 + 216x + 81.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (a + b)7 bằng
Tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (a + b)7 bằng
Câu 4:
Biểu thức (5x)2(-6y2)7 là một số hạng trong khai triển nhị thức nào dưới đây
Biểu thức (5x)2(-6y2)7 là một số hạng trong khai triển nhị thức nào dưới đây
Câu 6:
Với n là số nguyên dương thỏa mãn , hệ số của x5 trong khai triển của biểu thức bằng
Với n là số nguyên dương thỏa mãn , hệ số của x5 trong khai triển của biểu thức bằng
Câu 7:
Trong khai triển nhị thức (a + 2)n + 6 (n ℕ). Có tất cả 17 số hạng. Vậy n bằng
Trong khai triển nhị thức (a + 2)n + 6 (n ℕ). Có tất cả 17 số hạng. Vậy n bằng
Câu 12:
Biết hệ số của x2 trong khai triển của (1 – 3x)n là 90. Giá trị của n là
Biết hệ số của x2 trong khai triển của (1 – 3x)n là 90. Giá trị của n là