Câu hỏi:

07/07/2024 98

Hãy so sánh bán kính qua tiêu của điểm M trên parabol (P) với bán kính của đường tròn tâm M, tiếp xúc với đường chuẩn của (P).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Giả sử parabol (P) có phương trình chính tắc là y2= 2px (p > 0).

Gọi toạ độ của M là (x; y).

F(p/2;0) là tiêu điểm của (P), H là hình chiếu của M lên đường chuẩn Δ: x + p/2 = 0 của (P).

Khi đó:

MF = (p2x)2+y2=p24px+x2+2px=p24+px+x2=(x+p2)2=|x+p2|.

MH = |x+p2|.

Vậy MF = MH, mặt khác MH chính là bán kính của đường tròn tâm M, tiếp xúc với đường chuẩn của (P), do đó bán kính qua tiêu của điểm M trên parabol (P) bằng bán kính của đường tròn tâm M, tiếp xúc với đường chuẩn của (P).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tọa độ tiêu điểm và phương trình đường chuẩn của các parabol sau:

a) (P1): y2= 7x;

b) (P2):y2=13x;

c) (P3):y2=2x.

Xem đáp án » 17/07/2024 570

Câu 2:

Cho parabol (P). Trên (P) lấy hai điểm M, N sao cho đoạn thẳng MN đi qua tiêu điềm F của (P). Chứng minh rằng khoảng cách từ trung điểm I của đoạn thẳng MN đến đường chuẩn Δ của (P) bằng 1/2 MN và đường tròn đường kính MN tiếp xúc với Δ.

Xem đáp án » 18/07/2024 376

Câu 3:

Một sao chổi A chuyển động theo quỹ đạo có dạng một parabol (P) nhận tâm Mặt Trời là tiêu điểm. Cho biết khoảng cách ngắn nhất giữa sao chổi A và tâm Mặt Trời là khoảng 112 km.

a) Viết phương trình chính tắc của parabol (P).

b) Tính khoảng cách giữa sao chổi A và tâm Mặt Trời khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P).

Xem đáp án » 16/07/2024 355

Câu 4:

Trong mặt phẳng Oxy, cho điểm A(1/4; 0) và đường thẳng d: x+1/4. Viết phương trình của đường (P) là tập hợp tâm M(x; y) của các đường tròn (C) di động nhưng luôn luôn đi qua A và tiếp xúc với d.

Xem đáp án » 20/07/2024 291

Câu 5:

Một cồng có dạng một đường parabol (P). Biết chiều cao của cổng là 7,6 m và khoảng cách giữa hai chân cổng là 9 m. Người ta muốn treo một ngôi sao tại tiêu điểm F của (P) bằng một đoạn dây nối từ đỉnh S của cổng. Tính khoảng cách từ tâm ngôi sao đến đỉnh cổng.

Một cồng có dạng một đường parabol (P). Biết chiều cao của cổng là 7,6 m và khoảng cách giữa hai chân cổng là 9 m. Người ta muốn treo một ngôi sao tại tiêu điểm F của (P) bằng một đoạn dây nối từ đỉnh S của cổng. Tính khoảng cách từ tâm ngôi sao đến đỉnh cổng. (ảnh 1)

Xem đáp án » 12/07/2024 162

Câu 6:

Tìm toạ độ tiêu điểm, toạ độ đỉnh, phương trình đường chuẩn và trục đối xứng của các parabol sau:

a) (P1): y2= 2x;

b) (P2): y2= x;

c) (P3):y2=15x.

Xem đáp án » 18/07/2024 159

Câu 7:

Mặt cắt của một chảo ăng-ten có dạng một parabol (P) có phương trình chính tắc y2= 0,25x. Biết đầu thu tín hiệu của chảo ăng-ten đặt tại tiêu điểm F của (P). Tính khoảng cách từ điểm M(0,25; 0,25) trên ăng-ten đến F.

Mặt cắt của một chảo ăng-ten có dạng một parabol (P) có phương trình chính tắc y2 = 0,25x. Biết đầu thu tín hiệu của chảo ăng-ten đặt tại tiêu điểm F của (P). Tính khoảng cách từ điểm M(0,25; 0,25) trên ăng-ten đến F. (ảnh 1)

Xem đáp án » 16/07/2024 156

Câu 8:

Trong mặt phẳng Oxy, cho điểm A(2; 0) và đường thẳng d: x + 2 = 0. Viết phương trình của đường (L) là tập hợp các tâm J(x; y) của các đường tròn (C) thay đổi nhưng luôn luôn đi qua A và tiếp xúc với d.

Xem đáp án » 20/07/2024 124

Câu 9:

Chứng tỏ rằng nếu điểm M(x0; y0) nằm trên parabol (P) thì điểm M'(x0; –y0) cũng nằm trên parabol (P).

Xem đáp án » 15/07/2024 122

Câu 10:

Cho điểm M(x; y) trên parabol (P): y2 = 2px (Hình 2). Tính khoảng cách từ điểm M đến tiêu điểm F của (P).

Cho điểm M(x; y) trên parabol (P): y2 = 2px (Hình 2). Tính khoảng cách từ điểm M đến tiêu điểm F của (P). (ảnh 1)

Xem đáp án » 30/06/2024 102

Câu 11:

Tính bán kính qua tiêu của điểm đã cho trên các parabol sau:

a) Điểm M1(3; –6) trên (P1): y2= 12x;

b) Điểm M2(6; 1) trên (P2):y2=16x;

c) Điểm M3(3;3) trên (P3):y2=3x.

Xem đáp án » 21/07/2024 94

Câu 12:

Mặt cắt của gương phản chiếu của một đèn pha có dạng một parabol (P) có phương trình chính tắc y2= 6x. Tính khoảng cách từ điểm M(1;6) trên gương đến tiêu điểm của (P) (với đơn vị trên hệ trục toạ độ là xentimét).

Xem đáp án » 22/07/2024 94

Câu 13:

Tính bán kính qua tiêu của điểm dưới đây trên parabol tương ứng:

a) Điểm M1(1; –4) trên (P1): y2 = 16x;

b) Điểm M2(3; –3) trên (P2): y2= 3x;

c) Điểm M3(4; 1) trên (P3): y2=14x.

Xem đáp án » 22/07/2024 87

Câu hỏi mới nhất

Xem thêm »
Xem thêm »