Câu hỏi:
20/11/2024 1,505
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Đồ thị hàm số có bao nhiêu đường tiệm cận?
A. 3
B. 4
C. 1
D. 2
Trả lời:
Đáp án đúng: B
* Lời giải:
Hàm số có bậc tử < bậc mẫu nên đồ thị hàm số luôn có 1 TCN y = 0.
Xét nên đồ thị hàm số có 3 TCĐ.
Vậy đồ thị hàm số có 4 đường tiệm cận.
* Phương pháp giải:
- Đồ thị hàm phân thức hữu tỷ có bậc tử < bậc mẫu luôn có 1 TCN y = 0.
- Số TCĐ = số nghiệm của phương trình mẫu số không bị triệt tiêu bởi phương trình tử số.
*Một số lý thuyết và dạng bài tập về đường tiệm cận:
- Đường thẳng y = y0 gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số y = f(x) nếu hoặc .
- Đường thẳng x = x0 gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = ax + b (a ≠ 0) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số y = f(x) nếu hoặc .
Xem thêm các bài viết liên quan hay, chi tiết
50 Bài tập Đường tiệm cận Toán 12 mới nhất
Chuyên đề Đường tiệm cận (2022) - Toán 12
Toán 12 Bài 3 (Kết nối tri thức): Đường tiệm cận của đồ thị hàm số
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một khối trụ có đường cao bằng 2, chu vi thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ đó bằng:
Câu 4:
Có 10 học sinh, gồm 5 bạn lớp 12A và 5 bạn lớp 12B tham gia một trò chơi. Để thực hiện trò chơi, người điều khiển ghép ngẫu nhiên 10 học sinh đó thành 5 cặp. Xác suất để không có cặp nào gồm hai học sinh cùng lớp bằng
Câu 5:
Có bao nhiêu số nguyên a để phương trình có hai nghiệm phức thỏa mãn .
Có bao nhiêu số nguyên a để phương trình có hai nghiệm phức thỏa mãn .
Câu 6:
Giả sử f(x) là một đa thức bậc bốn. Đồ thị hàm số y = f'(1 - x) được cho như hình bên. Hỏi đồ thị hàm số nghịch biến trên khoảng nào trong các khoảng sau?
Câu 7:
Giả sử f(x) là một hàm số có đạo hàm liên tục trên Biết rằng là một nguyên hàm của trên Họ tất cả các nguyên hàm của hàm số là:
Câu 8:
Cho đồ thị Đường thẳng d đi qua điểm I(1; 1) cắt (C) tại hai điểm phân biệt A và B. Khi đó diện tích tam giác MAB với M(0; 3) đạt giá trị nhỏ nhất thì độ dài đoạn AB bằng:
Cho đồ thị Đường thẳng d đi qua điểm I(1; 1) cắt (C) tại hai điểm phân biệt A và B. Khi đó diện tích tam giác MAB với M(0; 3) đạt giá trị nhỏ nhất thì độ dài đoạn AB bằng:
Câu 9:
Giả sử f(x) là hàm liên tục trên và diện tích hình phẳng được kẻ sọc ở hình bên bằng 3. Tích phân bằng:
Giả sử f(x) là hàm liên tục trên và diện tích hình phẳng được kẻ sọc ở hình bên bằng 3. Tích phân bằng:
Câu 10:
Cho góc ở đỉnh của một hình nón bằng Gọi r, h, l lần lượt là bán kính đáy, đường cao, đường sinh của hình nón đó. Khẳng định nào sau đây đúng?
Cho góc ở đỉnh của một hình nón bằng Gọi r, h, l lần lượt là bán kính đáy, đường cao, đường sinh của hình nón đó. Khẳng định nào sau đây đúng?
Câu 12:
Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng AB và B'D' bằng:
Câu 13:
Cho hàm số y = f(x) liên tục trên và có bảng xét dấu đạo hàm như hình bên. Hỏi hàm số đã cho có bao nhiêu điểm cực trị?
Cho hàm số y = f(x) liên tục trên và có bảng xét dấu đạo hàm như hình bên. Hỏi hàm số đã cho có bao nhiêu điểm cực trị?
Câu 14:
Xét tất cả các số thực dương x, y thỏa mãn Khi biểu thức đạt giá trị nhỏ nhất, tích xy bằng:
Câu 15:
Hàm số y = sin x đồng biến trên khoảng nào trong các khoảng sau:
Hàm số y = sin x đồng biến trên khoảng nào trong các khoảng sau: