Câu hỏi:
17/07/2024 140Cho tam giác ABC thỏa mãn: sinC = cosA + cosB. Tìm mệnh đề đúng
A. Tam giác ABC cân tại A
B. Tam giác ABC là tam giác nhọn
C. Tam giác ABC đều
D. Tam giác ABC là tam giác vuông.
Trả lời:
Chọn D.
Ta có:
Vậy sin C = cosA + cos B khi và chỉ khi
Hay
cS= (a+b)(p-a)(p-b)
Nên c2[(a + b) 2 - c2]= (a + b)2[ c2 - (a - b)2]
Do đó; c4 = (a2 - b2) 2
Suy ra a2 = b2 + c2 hoặc b2 = c2 + a2
Suy ra; tam giác ABC vuông tại A hoặc B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Tính P = sinA. cos(B + C) + cos A.sin(B + C).
Câu 2:
Cho tam giác ABC có cạnh AB = 14, góc C = 1200, tổng hai cạnh còn lại là 16. Tính độ dài hai cạnh còn lại.
Câu 3:
Cho hình vuông ABCD, M là điểm nằm trên đoạn thẳng AC sao cho AM = AC/4, N là trung điểm của đoạn thẳng DC. Tìm mệnh đề đúng?
Câu 4:
Cho hai điểm A(-3; 2), B(4; 3). Biết có 2 điểm M trên trục Ox sao cho tam giác MAB vuông tại M. Tính tổng hoành độ 2 điểm đó.
Câu 6:
Cho tam giác đều ABC, độ dài cạnh là 3a . Lấy M, N, P lần lượt nằm trên các cạnh BC, CA, AB sao cho BM = a; CN = 2a và AP = x . Tính x để AM vuông góc với PN.
Câu 7:
Cho hình chữ nhật ABCD. Kẻ BK ⊥ AC. Gọi M, N lần lượt là trung điểm của AK và CD. Tìm mệnh đề đúng
Câu 8:
Cho tam giác ABC có A(-1; 1), B(3; 1), C(2; 4) . Tìm tọa độ điểm I là tâm đường tròn ngoại tiếp tam giác ABC.
Câu 9:
Cho tam giác ABC có a = 7, b = 8, c = 5. Gọi AD là phân giác trong của góc A. Tính AD.
Câu 10:
Cho hai điểm A(-3; 2), B(4; 3). Tìm tọa độ điểm N trên trục Oy sao cho ΔNAB cân tại N.
Câu 12:
Cho tam giác ABC. Biết các cạnh a, b, c đôi một khác nhau thoả mãn hệ thức: b(b2 - a2) = c(c2 - a2). Tìm mệnh đề đúng?
Câu 13:
Cho hai góc bù nhau α và β. Tính giá trị của biểu thức P= cosα.cosβ- sinα.sinβ.
Câu 15:
Cho tam giác ABC biết các cạnh a, b, c thỏa mãn hệ thức: a(a2 – c2) = b(b2 – c2). Tính góc C.