Câu hỏi:
03/07/2024 136
Cho tam giác ABC. Khẳng định nào sau đây là đúng?
A. \[\frac{{\tan A}}{{\tan B}} = \frac{{{a^2} + {b^2} - {c^2}}}{{{c^2} + {b^2} - {a^2}}}\];
B. \[\frac{{\tan A}}{{\tan B}} = \frac{{{c^2} + {b^2} - {a^2}}}{{{c^2} + {b^2} - {a^2}}}\];
C. \[\frac{{\tan A}}{{\tan B}} = \frac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}}\];
D. \[\frac{{\tan A}}{{\tan B}} = \frac{{2\left( {{c^2} + {a^2} - {b^2}\,} \right)}}{{{c^2} + {b^2} - {a^2}}}\].
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Theo định lí sin trong tam giác ABC ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
Suy ra \(\sin A = \frac{{a.\sin C}}{c}\); \(\sin B = \frac{{b.\sin C}}{c}\).
Lại có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\); \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\).
Do đó: \[\tan A = \frac{{\sin A}}{{\cos A}} = \frac{{\frac{{a.\sin C}}{c}}}{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}} = \frac{{2ab\sin C}}{{{b^2} + {c^2} - {a^2}}}\]
\[\tan B = \frac{{\sin B}}{{\cos B}} = \frac{{\frac{{b.\sin C}}{c}}}{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}} = \frac{{2ab\sin C}}{{{a^2} + {c^2} - {b^2}}}\].
Vậy \[\frac{{\tan A}}{{\tan B}} = \frac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}}\].
Hướng dẫn giải:
Đáp án đúng là: C.
Theo định lí sin trong tam giác ABC ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
Suy ra \(\sin A = \frac{{a.\sin C}}{c}\); \(\sin B = \frac{{b.\sin C}}{c}\).
Lại có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\); \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\).
Do đó: \[\tan A = \frac{{\sin A}}{{\cos A}} = \frac{{\frac{{a.\sin C}}{c}}}{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}} = \frac{{2ab\sin C}}{{{b^2} + {c^2} - {a^2}}}\]
\[\tan B = \frac{{\sin B}}{{\cos B}} = \frac{{\frac{{b.\sin C}}{c}}}{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}} = \frac{{2ab\sin C}}{{{a^2} + {c^2} - {b^2}}}\].
Vậy \[\frac{{\tan A}}{{\tan B}} = \frac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có BC = a, AC = b, AB = c. Khẳng định nào sau đây là đúng?
Câu 2:
Cho tam giác ABC có BC = a, AC = b, AB = c và b – c = \(\frac{a}{2}\). Khẳng định nào sau đây là đúng?
Câu 3:
Cho tam giác ABC có BC = a, AC = b, AB = c và bán kính đường tròn ngoại tiếp bằng R. Khẳng định nào sau đây là đúng?
Câu 4:
Cho tam giác ABC. Trên cạnh AB, AC lần lượt lấy hai điểm M, N. Khẳng định nào sau đây là đúng?
Câu 5:
Cho tam giác ABC thỏa mãn sin2A = sinB.sinC. Khẳng định nào sau đây là đúng?
Câu 6:
Cho tam giác ABC có BC = a, AC = b, AB = c và b + c = 2a. Khẳng định nào sau đây là đúng?
Câu 7:
Cho tam giác ABC. Với S là diện tích tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác, khẳng định nào sau đây là đúng?
Câu 8:
Tam giác ABC có BC = a, CA = b, AB = c.
Chứng minh rằng: a = b.cos C + c.cos B.
Tam giác ABC có BC = a, CA = b, AB = c.
Chứng minh rằng: a = b.cos C + c.cos B.