Câu hỏi:
03/07/2024 160
Cho tam giác ABC có BC = a, AC = b, AB = c và b + c = 2a. Khẳng định nào sau đây là đúng?
A. 2 sin A = sin B + sin C;
Đáp án chính xác
B. 2 sin A = 2sin B + sin C;
C. 2 sin A = sin B + 2sin C;
D. 2 sin A =2 sin B − sin C.
Trả lời:
Giải bởi Vietjack
Hướng dẫn giải:
Đáp án đúng là: A.
Theo định lý sin ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\).
Do đó: \(\sin A = \frac{a}{{2R}}\); \(\sin B = \frac{b}{{2R}}\); \(\sin C = \frac{c}{{2R}}\).
Ta có: sin B + sin C = \(\frac{b}{{2R}}\) + \(\frac{c}{{2R}}\) = \(\frac{{b + c}}{{2R}}\).
Mà b + c = 2a nên 2sin A = \(\frac{{2a}}{{2R}}\)= \(\frac{{b + c}}{{2R}}\).
Vậy 2 sin A = sin B + sin C.
Hướng dẫn giải:
Đáp án đúng là: A.
Theo định lý sin ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\).
Do đó: \(\sin A = \frac{a}{{2R}}\); \(\sin B = \frac{b}{{2R}}\); \(\sin C = \frac{c}{{2R}}\).
Ta có: sin B + sin C = \(\frac{b}{{2R}}\) + \(\frac{c}{{2R}}\) = \(\frac{{b + c}}{{2R}}\).
Mà b + c = 2a nên 2sin A = \(\frac{{2a}}{{2R}}\)= \(\frac{{b + c}}{{2R}}\).
Vậy 2 sin A = sin B + sin C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có BC = a, AC = b, AB = c. Khẳng định nào sau đây là đúng?
Xem đáp án »
23/07/2024
7,354
Câu 2:
Cho tam giác ABC có BC = a, AC = b, AB = c và b – c = \(\frac{a}{2}\). Khẳng định nào sau đây là đúng?
Xem đáp án »
15/07/2024
353
Câu 3:
Cho tam giác ABC có BC = a, AC = b, AB = c và bán kính đường tròn ngoại tiếp bằng R. Khẳng định nào sau đây là đúng?
Xem đáp án »
21/07/2024
197
Câu 4:
Cho tam giác ABC. Trên cạnh AB, AC lần lượt lấy hai điểm M, N. Khẳng định nào sau đây là đúng?
Xem đáp án »
03/07/2024
185
Câu 5:
Cho tam giác ABC thỏa mãn sin2A = sinB.sinC. Khẳng định nào sau đây là đúng?
Xem đáp án »
17/07/2024
181
Câu 6:
Cho tam giác ABC. Với S là diện tích tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác, khẳng định nào sau đây là đúng?
Xem đáp án »
18/07/2024
147
Câu 8:
Tam giác ABC có BC = a, CA = b, AB = c.
Chứng minh rằng: a = b.cos C + c.cos B.
Tam giác ABC có BC = a, CA = b, AB = c.
Chứng minh rằng: a = b.cos C + c.cos B.
Xem đáp án »
03/07/2024
139
Câu 9:
Tam giác ABC có BC = a, CA = b, AB = c và \({a^2} = 2\left( {{b^2} - {c^2}} \right)\). Chứng minh rằng: \({\sin ^2}A = 2\left( {{{\sin }^2}B - {{\sin }^2}C} \right)\).
Xem đáp án »
03/07/2024
131