Câu hỏi:
14/07/2024 205
Cho tam giác ABC có AB = 4, BC = 6, AC = 2 . Điểm M thuộc đoạn BC sao cho MC = 2MB. Tính độ dài cạnh AM.
A.
B. 3
C.
D.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Đặt AB = c = 4, AC = b = 2 , BC = a = 6.
Áp dụng định lí côsin cho tam giác ABC:
b2 = a2 + c2 – 2accosB
⇒ cosB =
⇒ cosB =
BC = 6 và MC = 2MB ⇒ MC = 4 và MB = 2.
Áp dụng định lí côsin cho tam giác ABM:
AM2 = AB2 + BM2 – 2.AM.BM.cos
AM2 = 42 + 22 – 2.2.4.
AM =
Vậy đáp án đúng là C.
Hướng dẫn giải
Đáp án đúng là: C
Đặt AB = c = 4, AC = b = 2 , BC = a = 6.
Áp dụng định lí côsin cho tam giác ABC:
b2 = a2 + c2 – 2accosB
⇒ cosB =
⇒ cosB =
BC = 6 và MC = 2MB ⇒ MC = 4 và MB = 2.
Áp dụng định lí côsin cho tam giác ABM:
AM2 = AB2 + BM2 – 2.AM.BM.cos
AM2 = 42 + 22 – 2.2.4.
AM =
Vậy đáp án đúng là C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đề bài: Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60°. Tàu tới B chạy với tốc độ 20 hải lí một giờ. Tàu tới C chạy với tốc độ 15 hải lí một giờ. Hỏi sau hai giờ hai tàu cách nhau bao nhiêu hải lí? ( Chọn kết quả gần nhất ).
Đề bài: Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60°. Tàu tới B chạy với tốc độ 20 hải lí một giờ. Tàu tới C chạy với tốc độ 15 hải lí một giờ. Hỏi sau hai giờ hai tàu cách nhau bao nhiêu hải lí? ( Chọn kết quả gần nhất ).
Câu 2:
Trên nóc tòa nhà có một cột ăng – ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?
Trên nóc tòa nhà có một cột ăng – ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?
Câu 3:
Tam giác ABC có AB = , BC = , CA = . AD là tia phân giác trong của . Tính .
Tam giác ABC có AB = , BC = , CA = . AD là tia phân giác trong của . Tính .
Câu 4:
Tam giác ABC có BC = a, AC = b, AB = c. Các cạnh a, b, c liên hệ với nhau bằng đẳng thức b.( b2 – a2 ) = c.( a2 – c2 ). Tính .
Tam giác ABC có BC = a, AC = b, AB = c. Các cạnh a, b, c liên hệ với nhau bằng đẳng thức b.( b2 – a2 ) = c.( a2 – c2 ). Tính .