Câu hỏi:
19/07/2024 124
Cho hai tập khác rỗng E = (m – 1; 4] và F = (– 2; 2m + 2] với m ∈ ℝ. Xác định m để F ⊂ E.
Cho hai tập khác rỗng E = (m – 1; 4] và F = (– 2; 2m + 2] với m ∈ ℝ. Xác định m để F ⊂ E.
A. m ∈ [– 2; 1);
B. m ∈ (– 2; 1];
Đáp án chính xác
C. m ∈ [– 2; 1];
D. m ∈ (– 2; 1);
Trả lời:

Hướng dẫn giải
Đáp án đúng là: B
ĐKXĐ các tập E và F: {m−1<42m+2>−2⇔{m<5m>−2⇔−2<m<5.
Ta có: F ⊂ E (tập F là tập con của tập E)⇔{m−1≤−24≥2m+2⇔{m≤−1m≤1⇔m≤−1.
Kết hợp với điều kiện ta được – 2 < m ≤ – 1.
Vậy m ∈ (– 2; 1].
Hướng dẫn giải
Đáp án đúng là: B
ĐKXĐ các tập E và F: {m−1<42m+2>−2⇔{m<5m>−2⇔−2<m<5.
Ta có: F ⊂ E (tập F là tập con của tập E)⇔{m−1≤−24≥2m+2⇔{m≤−1m≤1⇔m≤−1.
Kết hợp với điều kiện ta được – 2 < m ≤ – 1.
Vậy m ∈ (– 2; 1].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một lớp học có 23 học sinh giỏi môn Toán, 22 học sinh giỏi môn Lý, 15 học sinh
giỏi cả môn Toán và Lý và có 5 học sinh không giỏi môn nào cả. Hỏi lớp đó có bao nhiêu học sinh?
Một lớp học có 23 học sinh giỏi môn Toán, 22 học sinh giỏi môn Lý, 15 học sinh
giỏi cả môn Toán và Lý và có 5 học sinh không giỏi môn nào cả. Hỏi lớp đó có bao nhiêu học sinh?
Xem đáp án »
20/07/2024
175
Câu 2:
Cho A = {x ∈ ℝ| x + 2 ≥ 0}, B = {x ∈ ℝ| 5 – x ≥ 0}. Số các số nguyên thuộc cả hai tập A và B là:
Cho A = {x ∈ ℝ| x + 2 ≥ 0}, B = {x ∈ ℝ| 5 – x ≥ 0}. Số các số nguyên thuộc cả hai tập A và B là:
Xem đáp án »
13/07/2024
172
Câu 3:
Cho tập hợp C = {x ∈ ℝ| 8 < |– 3x + 5|}. Hãy viết lại các tập hợp C dưới dạng khoảng, nửa khoảng, đoạn.
Cho tập hợp C = {x ∈ ℝ| 8 < |– 3x + 5|}. Hãy viết lại các tập hợp C dưới dạng khoảng, nửa khoảng, đoạn.
Xem đáp án »
19/07/2024
166