Câu hỏi:
16/07/2024 862
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; – 1). Tính tổng S = a + b + c.
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; – 1). Tính tổng S = a + b + c.
A. S = – 1;
A. S = – 1;
B. S = – 4;
B. S = – 4;
C. S = 4;
C. S = 4;
D. S = 2.
D. S = 2.
Trả lời:
Đáp án đúng là: D
Vì hàm số đạt cực đại tại x = 2 nên bề lõm của parabol quay xuống dưới, do đó a < 0.
Từ giả thiết ta có hệ \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\ - \frac{\Delta }{{4a}} = 3\\c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\{b^2} - 4ac = - 12a\\c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\16{a^2} + 16a = 0\\c = - 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 0\\c = - 1\end{array} \right.\)(loại) hoặc \(\left\{ \begin{array}{l}a = - 1\\b = 4\\c = - 1\end{array} \right.\) (thỏa mãn)
Vậy S = – 1 + 4 + (– 1) = 2.
Đáp án đúng là: D
Vì hàm số đạt cực đại tại x = 2 nên bề lõm của parabol quay xuống dưới, do đó a < 0.
Từ giả thiết ta có hệ \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\ - \frac{\Delta }{{4a}} = 3\\c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\{b^2} - 4ac = - 12a\\c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\16{a^2} + 16a = 0\\c = - 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 0\\c = - 1\end{array} \right.\)(loại) hoặc \(\left\{ \begin{array}{l}a = - 1\\b = 4\\c = - 1\end{array} \right.\) (thỏa mãn)
Vậy S = – 1 + 4 + (– 1) = 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x). Biết f(x + 2) = x2 – 3x + 2 thì f(x) bằng:
Cho hàm số y = f(x). Biết f(x + 2) = x2 – 3x + 2 thì f(x) bằng:
Câu 2:
Cho parabol y = ax2 + bx – 3. Xác định hệ số a, b biết parabol có đỉnh
I(– 1; – 5)
Cho parabol y = ax2 + bx – 3. Xác định hệ số a, b biết parabol có đỉnh
I(– 1; – 5)
Câu 5:
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Hàm số đó là hàm số nào?
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Hàm số đó là hàm số nào?
Câu 6:
Biết rằng P: y = ax2 + bx + 2 (a > 1) đi qua điểm M(–1; 6) và có tung độ đỉnh bằng \( - \frac{1}{4}\). Tính tích P = a.b.
Biết rằng P: y = ax2 + bx + 2 (a > 1) đi qua điểm M(–1; 6) và có tung độ đỉnh bằng \( - \frac{1}{4}\). Tính tích P = a.b.
Câu 7:
Cho hàm số y = 2x2 – 4x – 1. Kết luận nào đúng trong các kết luận sau
Cho hàm số y = 2x2 – 4x – 1. Kết luận nào đúng trong các kết luận sau
Câu 8:
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Câu 9:
Parabol y = ax2 + bx + c đạt giá trị nhỏ nhất bằng 4 tại x = – 2 và đi qua
A(0; 6) có phương trình là
Parabol y = ax2 + bx + c đạt giá trị nhỏ nhất bằng 4 tại x = – 2 và đi qua
A(0; 6) có phương trình là
Câu 10:
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Câu 12:
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?