Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆: 2x – y – 1 = 0 và hai điểm A(– 1; 2), B(– 3; 4)

Lời giải Bài 1.27 trang 33 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 1,360 02/07/2023


Giải Chuyên đề Toán 11 Kết nối tri thức Bài tập cuối chuyên đề 1

Bài 1.27 trang 33 Chuyên đề Toán 11Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆: 2x – y – 1 = 0 và hai điểm A(– 1; 2), B(– 3; 4).

a) Tìm tọa độ điểm A' là ảnh của điểm A qua phép đối xứng trục ∆.

b) Xác định điểm M thuộc đường thẳng ∆ sao cho MA + MB đạt giá trị nhỏ nhất.

Lời giải:

a) Ta có: 2 . (– 1) – 2 – 1 = – 5 ≠ 0 nên A(– 1; 2) không thuộc ∆.

Gọi H là chân đường vuông góc hạ từ A xuống ∆.

Vì H thuộc ∆ nên H(x; 2x – 1). Ta có: AH=x+1;2x3, vectơ chỉ phương của đường thẳng ∆ là uΔ=1;2.

Vì AH vuông góc với ∆ nên AH.uΔ=0x+1.1+2x3.2=0.

Từ đó suy ra x = 1 nên H(1; 1).

Vì A' là ảnh của điểm A qua phép đối xứng trục ∆ nên AA' vuông góc với ∆ tại H và H là trung điểm của AA'. Suy ra xA'=2xHxA=2.11=3yA'=2yHyA=2.12=0. Vậy A'(3; 0).

b)

Bài 1.27 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

Ta có: 2 . (– 3) – 4 – 1 = – 11; 2 . (– 1) – 2 – 1 = – 5 và (– 11) . (– 5) = 55 > 0 nên hai điểm A và B nằm về một phía của đường thẳng ∆.

Vì M thuộc ∆ và A và A' đối xứng nhau qua ∆ nên MA = MA' và A' và B nằm về hai phía của đường thẳng ∆.

Do đó, MA + MB = MA' + MB đạt giá trị nhỏ nhất khi M là giao điểm của A'B và ∆.

Ta có: A'B=6;4, suy ra nA'B=2;3 là một vectơ pháp tuyến của đường thẳng A'B. Phương trình đường thẳng A'B là 2(x – 3) + 3(y – 0) = 0 hay 2x + 3y – 6 = 0.

Tọa độ giao điểm M của A'B và ∆ là nghiệm của hệ phương trình 2xy1=02x+3y6=0 x=98y=54. Vậy M98;54.

1 1,360 02/07/2023


Xem thêm các chương trình khác: