Cho đường thẳng d và hai điểm A, B cùng thuộc một nửa mặt phẳng bờ d

Lời giải Bài 1.31 trang 33 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 442 02/07/2023


Giải Chuyên đề Toán 11 Kết nối tri thức Bài tập cuối chuyên đề 1

Bài 1.31 trang 33 Chuyên đề Toán 11Cho đường thẳng d và hai điểm A, B cùng thuộc một nửa mặt phẳng bờ d. Hai điểm E, F thay đổi trên d sao cho EF không đổi. Xác định vị trí của hai điểm E, F để AE + BF nhỏ nhất.

Lời giải:

Bài 1.31 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

Ta có: EF=m (m > 0) không đổi.

Đặt u=EF u0u không đổi, khi đó u=m không đổi.

Gọi G là ảnh của điểm B qua phép tịnh tiến theo vectơ -u. Khi đó BG=u. Vì B cố định và u không đổi nên G cố định. Gọi G' là ảnh của G qua phép đối xứng trục d thì G' cố định.

Gọi giao điểm của AG' và đường thẳng d là E, trên d lấy điểm F thỏa mãn EF = m và EF=u=BG hay EF=GB. Khi đó BGEF là hình bình hành nên BF = GE.

Mà G và G' đối xứng nhau qua d nên GE = G'E. Do đó BF = GE = G'E.

Ta có: AE + BF = AE + G'E = AG' (1).

Ta có E và F như trên là hai điểm cần tìm để AE + BF nhỏ nhất.

Thật vậy, gọi E' và F' là 2 điểm trên d, khác E và F sao cho E'F'=u và E'F'=u=m.

Ta có: AE' + BF' = AE' + GE' = AE' + G'E' > AG' (2) (bất đẳng thức trong tam giác AG'E').

Từ (1) và (2) suy ra AE + BF < AE' + BF'. Từ đó suy ra điều phải chứng minh.

1 442 02/07/2023


Xem thêm các chương trình khác: