Lý thuyết Tọa độ của vectơ chi tiết – Toán lớp 10 Cánh diều
Với lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 10.
Lý thuyết Toán 10 Bài 1: Tọa độ của vectơ - Cánh diều
A. Lý thuyết
I. Tọa độ của một điểm
Để xác định tọa độ của một điểm M tùy ý trong mặt phẳng tọa độ Oxy, ta làm như sau (Hình 3):
+ Từ M kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm H ứng với số a. Số a là hoành độ của điểm M.
+ Từ M kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm K ứng với số b. Số b là tung độ của điểm M.
Cặp số (a; b) là tọa độ của điểm M trong mặt phẳng tọa độ Oxy. Ta kí hiệu là M(a ; b).
Ví dụ: Xác định tọa độ của điểm B trong hình vẽ sau:
Hướng dẫn giải
+ Từ B kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm ứng với số –3. Số –3 là hoành độ của điểm B.
+ Từ B kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm ứng với số 3. Số 3 là tung độ của điểm M.
Khi đó, cặp số (–3; 3) là tọa độ của điểm B.
Vậy điểm B có tọa độ là B(–3; 3).
II. Tọa độ của một vectơ
Tọa độ của điểm M được gọi là tọa độ của vectơ .
Nếu có tọa độ (a; b) thì ta viết = (a; b) hay (a; b), trong đó a gọi là hoành độ của vectơ và b gọi là tung độ của vectơ (Hình 4).
Chú ý: Trong mặt phẳng tọa độ Oxy, ta có:
+ = (a; b) ⇔ M(a ; b).
+ Vectơ có điểm gốc là O và có tọa độ (1; 0) gọi là vectơ đơn vị trên trục Ox.
Vectơ có điểm gốc là O và có tọa độ (0; 1) gọi là vectơ đơn vị trên trục Oy (Hình 4).
Ví dụ: Tìm tọa độ của vectơ , trong hình sau:
Hướng dẫn giải
Ta thấy điểm M có tọa độ là (–2 ; 4)
Suy ra = (–2 ; 4).
Điểm N có tọa độ là (2 ; –1)
Suy ra = (2 ; –1).
Vậy = (–2 ; 4) và = (2 ; –1).
Nhận xét:
– Với mỗi vectơ , ta xác định được duy nhất một điểm A sao cho = .
– Với mỗi vectơ trong mặt phẳng tọa độ Oxy, tọa độ của vectơ là tọa độ của điểm A, trong đó A là điểm sao cho = .
– Nếu có tọa độ (a; b) thì ta viết = (a; b) hay (a; b), trong đó a gọi là hoành độ của vectơ và b gọi là tung độ của vectơ .
Ví dụ: Tìm tọa độ của vectơ trong hình vẽ sau:
Hướng dẫn giải
Ta xác định vectơ = như hình sau:
Ta thấy điểm A(2 ; 2) nên = (2 ; 2).
Suy ra = (2 ; 2).
Vậy = (2 ; 2).
Định lí: Trong mặt phẳng tọa độ Oxy, nếu = (a ; b) thì = a + b. Ngược lại, nếu = a + b thì = (a ; b).
Chú ý: Với = (x1 ; y1) và = (x2 ; y2), ta có = ⇔
Như vậy, mỗi vectơ hoàn toàn được xác định khi biết tọa độ của nó.
Ví dụ: Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 3) và vectơ = (1; – 3).
a) Biểu diễn vectơ qua hai vectơ và .
b) Biểu diễn vectơ qua hai vectơ và .
Hướng dẫn giải
a) Vì vectơ = (1; – 3) nên = 1 + (– 3) = – 3
Vậy = – 3
b) Vì điểm M có tọa độ là (2 ; 3) nên = (2 ; 3).
Do đó: = 2 + 3.
Vậy = 2 + 3.
III. Liên hệ giữa tọa độ của điểm và tọa độ của vectơ
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(xA; yA) và B(xB; yB).
Ta có = (xB – xA ; yB – yA).
Ví dụ: Cho hai điểm A(2; –4) và B(1; 5). Hãy tìm tọa độ của vectơ .
Hướng dẫn giải
Ta có = (1 – 2; 5 – (–4)) = (–1 ; 9).
Vậy = (–1 ; 9).
B. Bài tập tự luyện
B.1 Bài tập tự luận
Bài 1. Tìm tọa độ của các vectơ sau:
a) = 3 + ;
b) = – 2;
c) = – .
Hướng dẫn giải
a) Ta có = 3 + = 3 + 1
Suy ra = (3 ; 1).
Vậy = (3 ; 1).
b) Ta có = –2 = 0 + (–2)
Suy ra = (0 ; –2).
Vậy = (0 ; –2).
c) Ta có = – = + (– ).
Suy ra = (1; – ).
Vậy = (1; – ).
Bài 2. Cho 3 điểm A(0; 2), B(–1; 3), C(2; 5). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Hướng dẫn giải
Giả sử điểm D có tọa độ là (xD ; yD)
Ta có = (–1 – 0 ; 3 – 2) = (–1 ; 1)
= (2 – xD ; 5 – yD).
Để ABCD là hình bình hành thì = .
= ⇔ ⇔
Suy ra điểm D có tọa độ là (3 ; 4).
Vậy để ABCD là hình bình hành thì D(3 ; 4).
Bài 3. Tìm số thực m và n sao cho hai vectơ = (m; –4) và = (–1; 3m + n) bằng nhau.
Hướng dẫn giải
Ta có = ⇔ ⇔ ⇔
Vậy để = thì m = –1 và n = –1.
B.2 Bài tập trắc nghiệm
Câu 1. Trong hệ tọa độ Oxy cho A(5; 2), B(10; 8). Tìm tọa độ của vectơ .
A. = (15; 10);
B. = (2; 4);
C. = (5; 6);
D. = (50; 16).
Hướng dẫn giải
Đáp án đúng là: C
Ta có: = (10 – 5 ; 8 – 2) = (5; 6).
Câu 2. Trong hệ tọa độ Oxy cho bốn điểm A(1; 1), B(2; – 1), C(4 ; 3), D (3 ; 5). Khẳng định nào sau đây đúng?
A. Tứ giác ABCD là hình bình hành ;
B. A, B, C, D trùng nhau ;
C.
D. cùng phương.
Hướng dẫn giải
Đáp án đúng là : A
Ta có : , do đó ABCD là hình bình hành.
Câu 3. Cho hai vectơ và . Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
A. a = 2, b = – 1;
B. a = – 1, b = 2;
C. a = – 1, b = – 2;
D. a = 2, b = 1.
Hướng dẫn giải
Đáp án đúng là: A
Để .
Vậy a = 2 và b = – 1.
Xem thêm tóm tắt lý thuyết Toán lớp 10 sách Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều