Lý thuyết Dấu của tam thức bậc hai – Toán 10 Cánh diều
Với lý thuyết Toán lớp 10 Bài 3. Dấu của tam thức bậc hai, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 10.
Lý thuyết Toán 10 Bài 3. Dấu của tam thức bậc hai – Cánh diều
A. Lý thuyết
1. Dấu của tam thức bậc hai
Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0), ∆ = b2 – 4ac.
+ Nếu ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ∈ ℝ
+ Nếu ∆ = 0 thì f(x) cùng dấu với hệ số a với mọi x ∈ ℝ \
+ Nếu ∆ > 0 thì f(x) có hai nghiệm x1, x2 (x1 < x2). Khi đó:
– f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (–∞; x1); (x2; +∞)
– f(x) trái dấu với hệ số a với mọi x thuộc khoảng (x1; x2).
2. Ví dụ
2.1. Ví dụ 1
Xét dấu của tam thức bậc hai
a) f(x) = 4x2 – x + 1;
b) f(x) = x2 + 2x + 1.
Hướng dẫn giải
a) Tam thức bậc hai f(x) = 4x2 – x + 1 có ∆ = b2 – 4ac = (– 1)2 – 4.4.1 = –15 < 0, hệ số
a = 4 > 0 nên f(x) > 0 với mọi x ∈ ℝ.
b) Tam thức bậc hai f(x) = x2 + 2x + 1 có ∆ = b2 – 4ac = 22 – 4.1.1 = 0, hệ số a = 1 > 0, nghiệm kép x0 = – 1 nên f(x) > 0 với mọi x ∈ ℝ \ {– 1}.
2.2. Ví dụ 2
Lập bảng xét dấu của tam thức bậc hai f(x) = x2 – 4x + 3.
Hướng dẫn giải
Tam thức bậc hai f(x) = x2 – 4x + 3 có ∆ = b2 – 4ac = (– 4)2 – 4.1.3 = 4 > 0 có hai nghiệm phân biệt x1 = 1; x2 = 3; hệ số a = 1 > 0.
Ta có bảng xét dấu như sau:
B. Bài tập tự luyện
Bài 1. Tìm nghiệm và lập bảng xét dấu của tam thức bậc hai với đồ thị được cho ở mỗi hình.
Hướng dẫn giải
a)
Ta thấy đồ thị cắt trục Ox tại điểm (2; 0) nên phương trình f(x) = 0 có duy nhất nghiệm x = 2.
Ta thấy đồ thị nằm trên trục hoành nên ta có bảng xét dấu:
b)
Ta thấy đồ thị cắt trục Ox tại hai điểm phân biệt (–4; 0) và (–1; 0) nên phương trình
f(x) = 0 có hai nghiệm phân biệt x1 = –4; x2 = –1.
Trong các khoảng (–∞; –4) và (–1; +∞) thì đồ thị nằm dưới trục hoành nên f(x) < 0, trong khoảng (–4; –1) thì đồ thị nằm trên trục hoành nên f(x) > 0.
Bảng xét dấu:
c)
Ta thấy đồ thị cắt trục Ox tại hai điểm phân biệt (–1; 0) và (2; 0) nên phương trình
f(x) = 0 có hai nghiệm phân biệt x1 = –1; x2 = 2
Trong các khoảng (–∞; –1) và (2; +∞) thì đồ thị nằm trên trục hoành nên f(x) > 0
Trong khoảng (–1; 2) thì đồ thị nằm dưới trục hoành nên f(x) < 0.
Bảng xét dấu:
Bài 2. Khi nào thì tam thức bậc hai nhận giá trị dương.
Hướng dẫn giải
Ta có: .
Bảng xét dấu:
Dựa vào bảng xét dấu
Bài 3. Tìm giá trị nguyên của x để tam thức f(x) = 2x2 – 7x – 9 nhận giá trị âm.
Hướng dẫn giải
Ta có: .
Bảng xét dấu
Dựa vào bảng xét dấu . Mà x nguyên nên x ∈ {0 ; 1 ; 2 ; 3 ; 4}.
Như vậy, với x nguyên x ∈ {0 ; 1 ; 2 ; 3 ; 4} thì f(x) = 2x2 – 7x – 9 < 0.
B.2 Bài tập trắc nghiệm
Câu 1.Tam thức bậc hai nhận giá trị không âm khi và chỉ khi
A.;
B. ;
C. .
D. .
Hướng dẫn giải
Đáp án đúng là: B
Ta có: .
Bảng xét dấu
Dựa vào bảng xét dấu .
Do đó, .
Câu 2. Tam thức bậc hai nhận giá trị dương khi và chỉ khi
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án đúng là: D
Ta có: .
Bảng xét dấu
Dựa vào bảng xét dấu
Câu 3. Cho các tam thức . Số tam thức đổi dấu trên ℝ là:
A. 0;
B. 1;
C. 2;
D. 3.
Hướng dẫn giải
Đáp án đúng là: B
Vì f(x) = 0 vô nghiệm, g(x) = 0 vô nghiệm, h(x) = 0 có hai nghiệm phân biệt nên chỉ có h(x) đổi dấu trên ℝ.
Xem thêm tóm tắt lý thuyết Toán lớp 10 sách Cánh diều hay, chi tiết khác:
Lý thuyết Bài 4. Bất phương trình bậc hai một ẩn
Lý thuyết Bài 5. Hai dạng phương trình quy về phương trình bậc hai
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều