Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Bài 21. Đường tròn trong mặt phẳng toạ độ có đáp án

Trắc nghiệm Toán 10 Bài 21. Đường tròn trong mặt phẳng toạ độ có đáp án

Trắc nghiệm Toán 10 Bài 21. Đường tròn trong mặt phẳng toạ độ có đáp án

  • 302 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

21/07/2024

Tọa độ tâm I và bán kính R của đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\] là:

Xem đáp án

Đáp án đúng là: B

Ta có: \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\]\[ \Rightarrow \]Tâm I (1; -3), bán kính R = \[\sqrt {16} \]= 4.


Câu 2:

21/07/2024

Gọi I(a; b) là tâm của đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]. Tính S = 2a + b:

Xem đáp án

Đáp án đúng là: D

Ta có: \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\] I0;4,R=5

a = 0, b = -4

S = 2a + b = 2.0 + (-4) = -4.


Câu 3:

17/07/2024

Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8\]. Tìm I và tính S = 3.R.

Xem đáp án

Đáp án đúng là: C

Ta có: \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8 \Rightarrow \] \[I\left( { - 1;0} \right),\,R = \sqrt 8 = 2\sqrt 2 \].

3.R = 6\[\sqrt 2 \].


Câu 4:

21/07/2024

Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{x^2} + {y^2} = 9\]. Tìm I và tính S = \[{R^3}\].

Xem đáp án

Đáp án đúng là: D

Ta có: \(\left( C \right):{x^2} + {y^2} = 9\)\( \Rightarrow I\left( {0;0} \right),\,\,R = \sqrt 9 = 3.\)

Suy ra S = \[{R^3}\]= 27.


Câu 5:

21/07/2024

Đường tròn \[\left( C \right):{x^2} + {y^2} - 6x + 2y + 6 = 0\] có tâm I, bán kính R lần lượt là:

Xem đáp án

Đáp án đúng là: C

Ta có: \[\left( C \right):{x^2} + {y^2} - 6x + 2y + 6 = 0\]\[ \Rightarrow a = \frac{{ - 6}}{{ - 2}} = 3\]; \[b = \frac{2}{{ - 2}} = - 1\]; c = 6

\[ \Rightarrow \]I (3; -1) và \[R = \sqrt {{3^2} + {{\left( { - 1} \right)}^2} - 6} = \]2.


Câu 6:

17/07/2024

Đường tròn có tâm trùng với gốc tọa độ, bán kính R = 1 có phương trình là:

Xem đáp án

Đáp án đúng là: B

Đường tròn (C) phải thoả mãn hai điều kiện sau:

 \[\left( C \right):\left\{ \begin{array}{l}I\left( {0;0} \right)\\R = 1\end{array} \right.\] suy ra chỉ có phương trình \[{x^2} + {y^2} = 1\] thoả mãn yêu cầu.


Câu 7:

18/11/2024

Đường tròn có tâm I (1; 2), bán kính R = 3 có phương trình là:

Xem đáp án

Đáp án đúng là: A

Lời giải

Đường tròn có tâm I (1; 2), bán kính R = 3 có phương trình là:

\[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\]

\[ \Leftrightarrow {x^2} + {y^2} - 2x - 4y - 4 = 0\]

*Phương pháp giải:

Phương trình đường tròn có dạng x2+y22ax2by+c=0 với các số a,b,c thỏa mãn điều kiện a2+b2>c

*Lý thuyết:

Trong mặt phẳng Oxy cho đường tròn (C) tâm I(a; b), bán kính R. Ta có phương trình đường tròn: (xa)2+(yb)2=R2

Phương trình đường tròn và cách giải bài tập – Toán lớp 10 (ảnh 1)

- Nhận xét:

+ Phương trình đường tròn (xa)2+(yb)2=R2 có thể được viết dưới dạng x2+y22ax2by+c=0 trong đó c=a2+b2R2

+ Ngược lại, phương trình x2+y22ax2by+c=0 là phương trình đường tròn khi và chỉ khi a2+b2c>0. Khi đó đường tròn có tâm I(a; b) và bán kính R=a2+b2c

Xem thêm

Phương trình đường tròn (lý thuyết và cách giải các dạng bài tập) 

 


Câu 8:

23/07/2024

Đường tròn (C) có tâm I (1; -5) và đi qua O (0; 0) có phương trình là:

Xem đáp án

Đáp án đúng là: C

Ta có: Bán kính của đường tròn R = OI = \[\sqrt {{{(1 - 0)}^2} + {{( - 5 - 0)}^2}} = \sqrt {26} \]

Phương trình đường tròn\[\left( C \right):\left\{ \begin{array}{l}I\left( {1; - 5} \right)\\R = OI = \sqrt {26} \end{array} \right.\] là: \[{\left( {x - 1} \right)^2} + {\left( {y + 5} \right)^2} = 26\]


Câu 9:

22/07/2024

Đường tròn (C) có tâm I (-2; 3) và đi qua M (2; -3) có phương trình là:

Xem đáp án

Đáp án đúng là: D

Ta có: Bán kính của đường tròn:

R = IM = \[\sqrt {{{\left( {2 + 2} \right)}^2} + {{\left( { - 3 - 3} \right)}^2}} = \sqrt {52} \]

Vậy phương trình đường tròn \[\left( C \right):\left\{ \begin{array}{l}I\left( { - 2;3} \right)\\R = \sqrt {52} \end{array} \right.\]là: \[\left( C \right):{\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 52.\]

hay \[\left( C \right):{x^2} + {y^2} + 4x - 6y - 39 = 0\].


Câu 10:

21/07/2024

Đường tròn đường kính AB với A (3; -1), B (1; -5) có phương trình là:

Xem đáp án

Đáp án đúng là: D

Đường tròn có đường kính AB nên tâm I của đường tròn là trung điểm của AB:

\( \Rightarrow \left\{ \begin{array}{l}{x_I} = \frac{{3 + 1}}{2} = 2\\{y_I} = \frac{{ - 1 + \left( { - 5} \right)}}{2} = - 3\end{array} \right.\)

Và bán kính của đường tròn là:

R = \[\frac{1}{2}AB\] = \[\frac{1}{2}\sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( { - 5 + 1} \right)}^2}} \]= \[\sqrt 5 \]

Khi đó phương trình đường tròn\[\left( C \right):\left\{ \begin{array}{l}I\left( {2; - 3} \right)\\R = \sqrt 5 \end{array} \right.\] là:

\[\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 5.\]


Câu 11:

21/07/2024

Phương trình tiếp tuyến d của đường tròn \[\left( C \right):{\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} = 25\] tại trung điểm của A (1; 3) và B (3; -1) là:

Xem đáp án

Đáp án đúng là: D

Gọi M là trung điểm của A và B, ta có: M \[\left( {\frac{{1 + 3}}{2};\frac{{3 + ( - 1)}}{2}} \right)\]= (2; 1).

Đường tròn (C) có tâm I (-2; -2) nên tiếp tuyến tại M có VTPT là \[\vec n = \overrightarrow {IM} = \left( {4;3} \right)\] nên có phương trình là: 4.(x – 2) + 3.(y – 1) = 0\[ \Leftrightarrow \]4x + 3y – 11 = 0.


Câu 12:

16/07/2024

Cho đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\]. Viết phương trình tiếp tuyến d của (C) tại điểm A (3; -4).

Xem đáp án

Đáp án đúng là: C

Đường tròn (C) có tâm I (1; -2) nên tiếp tuyến tại A có VTPT là

\[\vec n = \overrightarrow {IA} = \](2; -2) = 2(1; -1)

Nên có phương trình là:   1(x - 3) - 1.(y + 4) = 0\[ \Leftrightarrow \]x - y - 7 = 0.


Câu 13:

21/07/2024

Phương trình tiếp tuyến d của đường tròn \[\left( C \right):{x^2} + {y^2} - 3x - y = 0\] tại điểm đối xứng với M (-1; -1) qua trục Oy là:

Xem đáp án

Đáp án đúng là: D

Gọi N là điểm đối xứng của M qua Oy, ta có: N (1; -1).

Đường tròn (C) có tâm \[I\left( {\frac{3}{2};\frac{1}{2}} \right)\] nên tiếp tuyến tại N có VTPT là

\[\vec n = \overrightarrow {IN} = \left( { - \frac{1}{2}; - \frac{3}{2}} \right) = - \frac{1}{2}\left( {1;3} \right),\]

Nên có phương trình là: 1(x - 1) +3(y + 1) = 0\[ \Leftrightarrow \]x + 3y + 2 = 0.


Câu 14:

21/07/2024

Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} = 5\], biết tiếp tuyến song song với đường thẳng d: 2x + y + 7 = 0.

Xem đáp án

Đáp án đúng là: B

Đường tròn (C) có tâm I(3; -1), R = \[\sqrt 5 \].

Vì tiếp tuyến của đường tròn (C) song song với đường thẳng d: 2x + y + 7 = 0 nên tiếp tuyến có dạng \[\Delta \]: 2x + y + c = 0 (c ≠ 7).

Ta có:

Bán kính của đường tròn \[R = d\left( {I;\Delta } \right) \Leftrightarrow \]\[\frac{{\left| {c + 5} \right|}}{{\sqrt 5 }} = \sqrt 5 \]

\[ \Leftrightarrow \]\[\left| {c + 5} \right| = 5\]\[ \Leftrightarrow \]\[\left[ \begin{array}{l}c + 5 = 5\\c + 5 = - 5\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}c = 0\\c = - 10\end{array} \right.\]

suy ra\[\Delta \]:2x + y = 0 hoặc \[\Delta \]:2x + y – 10 = 0.


Câu 15:

21/07/2024

Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\], biết tiếp tuyến song song với đường thẳng d: 3x – 4y –  2018 = 0.

 

Xem đáp án

Đáp án đúng là: A

Ta có: Đường tròn (C) có tâm I(-2; -2), R = 5 và tiếp tuyến có dạng

\[\Delta \]: 3x – 4y + c = 0 (c ≠ -2018)

Bán kính đường tròn: \[R = d\left( {I;\Delta } \right)\] \[ \Leftrightarrow \frac{{\left| {c + 2} \right|}}{5} = 5\]

\[ \Leftrightarrow \left| {c + 2} \right| = 25\]\[ \Leftrightarrow \left[ \begin{array}{l}c + 2 = 25\\c + 2 = - 25\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}c = 23\\c = - 27\end{array} \right.\]

suy ra: \[\Delta \]:3x – 4y + 23 = 0 hoặc \[\Delta \]: 3x – 4y – 27 = 0.


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương