Trang chủ Lớp 10 Toán Thi Online Trắc nghiệm Toán 10 CTST Bài 3. Tích của một số với một vectơ có đáp án

Thi Online Trắc nghiệm Toán 10 CTST Bài 3. Tích của một số với một vectơ có đáp án

Dạng 4: Phân tích một vectơ thành hai hay nhiều vectơ cho trước có đáp án

  • 875 lượt thi

  • 10 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

19/07/2024

Cho tam giác ABC. Đặt AB=a,  AC=b. M thuộc cạnh AB sao cho AB = 3AM, N thuộc tia BC và CN = 2BC. Phân tích  qua các vectơ a b ta được biểu thức là:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Cho tam giác ABC. Đặt vecto AB= vecto a,vecto AC= vecto b  . M thuộc cạnh AB sao cho AB = 3AM, (ảnh 1)

Theo đề bài: CN = 2BC nên BN=3BC

Ta có:

AN=AB+BN=AB+3BC=AB+3ACAB=2AB+3AC=2a+3b.


Câu 2:

22/07/2024

Cho tam giác ABC. Đặt AB=a, AC=b. M thuộc cạnh AB sao cho AB = 3AM, N thuộc tia BC và CN = 2BC. Phân tích  qua các vectơ a b ta được biểu thức là:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

Cho tam giác ABC. Đặt vecto AB= vecto a, vecto AC= vecto b. M thuộc cạnh AB sao cho AB = 3AM, (ảnh 1)

Theo đề bài:

AB = 3AM nên AM=13ABMA=13AB

CN = 2BC nên BN=3BC

Ta có:

AN=AB+BN=AB+3BC=AB+3ACAB=2AB+3AC=2a+3b

MN=MA+AN=13a2a+3b=73a+3b.


Câu 3:

20/07/2024

Cho tam giác ABC, trên cạnh BC lấy M sao cho BM = 3CM, trên đoạn AM lấy N sao cho 2AN = 5MN. Phân tích vectơ BN qua các vectơ AB AC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: C.

Cho tam giác ABC, trên cạnh BC lấy M sao cho BM = 3CM, trên đoạn AM lấy N (ảnh 1)

Theo đề bài ta có:

BM=34BC và AN=57AM

Ta có:

AM=AB+BM=AB+34BC=AB+34ACAB=14AB+34AC

BN=BA+AN=AB+57AM=AB+5714AB+34AC=2328AB+1528AC


Câu 4:

12/07/2024

Cho tam giác ABC, G là trọng tâm của tam giác ABC. Phân tích vectơ GC qua các vectơ GA GB.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Cho tam giác ABC, G là trọng tâm của tam giác ABC. Phân tích vectơ vecto GC (ảnh 1)

Theo đề bài ta có: G là trọng tâm của tam giác ABC nên

GA+GB+GC=0GC=GAGB.


Câu 5:

22/07/2024

Cho tam giác ABC, trên cạnh BC lấy M sao cho BM = 3CM, trên đoạn AM lấy N sao cho 2AN = 5MN. G là trọng tâm của tam giác ABC. Phân tích vectơ MN qua các vectơ GA GB.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

Cho tam giác ABC, trên cạnh BC lấy M sao cho BM = 3CM, trên đoạn AM lấy N sao (ảnh 1)

Theo đề bài ta có:

BM=34BC MN=27AM.

Vì G là trọng tâm tam giác ABC nên GA+GB+GC=0GC=GAGB

Ta có:

AM=AB+BM=AB+34BC=AB+34ACAB=14AB+34AC

MN=27AM=2714AB+34AC

=114GBGA314GCGA

=114GBGA314GAGBGA

=12GA+17GB.


Câu 6:

12/07/2024

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM, CD = 2CN. Biểu diễn vectơ AN qua các vectơ AB AC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: D.

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD (ảnh 1)

Ta có: CD = 2CN và N nằm trên cạnh CD nên CN=12CD.

Mà ABCD là hình bình hành nên AB=DCAB=CD.

Do đó, CN=12AB.

Theo quy tắc ba điểm ta có: AN=AC+CN=AC12AB.


Câu 7:

20/07/2024

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM, CD = 2CN và G là trọng tâm tam giác MNB. Phân tích vectơ MN qua các vectơ AB AC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: C.

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD (ảnh 1)

Vì AB = 3AM và M nằm trên cạnh AB nên MA=13AB.

Ta có: AN=AC+CN=AC12AB 

Do đó ta có: MN=MA+AN=13AB+AC12AB=56AB+AC.


Câu 8:

16/07/2024

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM, CD = 2CN và G là trọng tâm tam giác MNB. Phân tích vectơ AG qua các vectơ AB AC ta được AG=abAB+cdAC với ab cd là các phân số tối giản. Khi đó ta có: ab+cd=?

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD (ảnh 1)

Vì AB = 3AM và M nằm trên cạnh AB nên AM=13AB.

Ta có: AN=AC+CN=AC12AB.

G là trọng tâm tam giác MNB nên ta có:

3AG=AM+AN+AB=13AB+AC12AB+AB=56AB+AC

AG=518AB+13AC.

Do đó ab=518 cd=13.

Suy ra ab+cd=518+13=1118.


Câu 9:

09/10/2024

Cho AK và BM là hai trung tuyến của tam giác ABC. Phân tích vectơ AB theo hai vectơ AK=u BM=v ta được biểu thức là:

Xem đáp án

Đáp án đúng:  C.

*Phương pháp giải:

- Nắm kỹ lý thuyết về vectơ và dạng bài tính tổng hiệu hai vecto. Tính chất trung điểm, đường trung bình của tam giác để làm 

*Lời giải:

Cho AK và BM là hai trung tuyến của tam giác ABC. Phân tích vectơ AB theo hai (ảnh 1)

Ta có:

AB=AK+KB=AK+KM+MB

KM=12AB (vì MK là đường trung bình của tam giác ABC)

Do đó:

AB=AK12ABBM

AB+12AB=AKBM

32AB=AKBM

AB=23AK23BM=23u23v.

*Một số dạng bài về tích của vectơ với một số

*Lý thuyết cần nắm:

- Tích của vectơ với một số: Cho số k0 và vectơ a0. Tích của vectơ a với số k là một vectơ, kí hiệu là ka, cùng hướng với a nếu k > 0, ngược lại, ngược hướng với a nếu k < 0 và có độ dài bằng ka.

- Tính chất: Với hai vectơ a và b bất kì, với mọi số h và k, ta có:

Tích của vectơ với một số và cách giải bài tập – Toán lớp 10 (ảnh 1)

- Quy tắc trung điểm: Nếu I là trung điểm của đoạn thẳng AB thì với mọi điểm M ta có: MA+MB=2MI

- Quy tắc trọng tâm: Nếu G là trọng tâm của tam giác ABC thì với mọi điểm M ta có: MA+MB+MC=3MG

Dạng 1: Tính độ dài vectơ khi biết tích vectơ với một số.

* Phương pháp giải: Sử dụng định nghĩa tích của vectơ với một số, các quy tắc về tổng, hiệu của các vectơ và các hệ thức lượng, định lý Py-ta-go để tính độ dài vectơ đó.

Dạng 2: Tìm một điểm thỏa mãn một đẳng thức vectơ cho trước.

* Phương pháp giải: Biến đổi đẳng thức đã cho về dạng AM=u trong đó A là một điểm cố định, u cố định và dựng điểm M là điểm thỏa mãn AM=u.

Xem thêm các bài viết liên quan hay, chi tiết

Giải Toán 10 Bài 3 (Chân trời sáng tạo): Tích của một số với một vectơ

Chuyên đề Vectơ lớp 10 (có đáp án)

 


Câu 10:

19/07/2024

Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2IC=3BI. Phân tích vectơ AI theo hai vectơ AB AC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: C.

Ta có: 2IC=3BI

2ACAI=3AIAB

2AC2AI=3AI3AB

5AI=3AB+2AC

AI=35AB+25AC.


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương