Thi Online Trắc nghiệm Toán 10 Bài 22. Ba đường Conic có đáp án
Trắc nghiệm Toán 10 Bài 22. Ba đường Conic có đáp án
-
381 lượt thi
-
15 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
23/11/2024Elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có độ dài trục lớn bằng:
Đáp án đúng là: B
Lời giải
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có độ dài trục lớn \({A_1}{A_2} = \) 2a.
Xét \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) \( \Rightarrow \left\{ \begin{array}{l}{a^2} = 25\\{b^2} = 9\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}a = 5\\b = 3\end{array} \right.\,\,\)\( \Rightarrow \,\,{A_1}{A_2} = 2.5 = 10\).
*Phương pháp giải:
Cho elip (E) có phương trình
- Trục lớn của (E) nằm trên Ox:
*Lý thuyết:
1. Định nghĩa elip
Cho hai điểm cố định và và một độ dài không đổi 2a lớn hơn . Elip là tập hợp các điểm M trong mặt phẳng sao cho .
- Hình dạng của elip: Elip có hai trục đối xứng là Ox, Oy và có tâm đối xứng là gốc toạ độ.
2. Các thành phần của Elip
Trong mặt phẳng Oxy
II. Phương trình chính tắc của elip
Cho elip (E) có các tiêu điểm và . Điểm M thuộc elip khi và chỉ khi . Chọn hệ trục tọa độ Oxy, cho (-c; 0) và (c; 0). Khi đó ta có:
M (x; y) . (1) với
Phương trình (1) là phương trình chính tắc của elip.
III. Liên hệ giữa đường tròn và đường elip
+ Từ hệ thức ta thấy nếu tiêu cự của elip càng nhỏ thì b càng gần bằng a, tức là trục nhỏ của elip càng gần bằng trục lớn. Lúc đó elip có dạng gần như đường tròn
+ Trong mặt phẳng Oxy cho đường tròn (C) có phương trình . Với mỗi điểm M (x; y) thuộc đường tròn ta xét điểm M’(x’; y’) sao cho : với (0 < b < a) thì tập hợp các điểm M’ có tọa độ thỏa mãn phương trình:
là một elip (E). Khi đó ta nói đường tròn (C) được co thành elip (E).
Xem thêm
Phương trình đường elip (Lý thuyết, công thức) các dạng bài tập và cách giảiCâu 2:
23/11/2024Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục lớn bằng:
Đáp án đúng là: C
Lời giải
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có độ dài trục lớn \({A_1}{A_2} = \)2a.
Xét \(\left( E \right):4{x^2} + 16{y^2} = 1\)\( \Leftrightarrow \frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1\)
\( \Leftrightarrow \)\(\left\{ \begin{array}{l}{a^2} = \frac{1}{4}\\{b^2} = \frac{1}{{16}}\end{array} \right.\)\( \Rightarrow a = \frac{1}{2}\,\)\( \Rightarrow \,\,\,{A_1}{A_2} = 2.\frac{1}{2} = 1.\)
*Phương pháp giải:
Cho elip (E) có phương trình
- Trục lớn của (E) nằm trên Ox:
*Lý thuyết:
1. Định nghĩa elip
Cho hai điểm cố định và và một độ dài không đổi 2a lớn hơn . Elip là tập hợp các điểm M trong mặt phẳng sao cho .
- Hình dạng của elip: Elip có hai trục đối xứng là Ox, Oy và có tâm đối xứng là gốc toạ độ.
2. Các thành phần của Elip
Trong mặt phẳng Oxy
II. Phương trình chính tắc của elip
Cho elip (E) có các tiêu điểm và . Điểm M thuộc elip khi và chỉ khi . Chọn hệ trục tọa độ Oxy, cho (-c; 0) và (c; 0). Khi đó ta có:
M (x; y) . (1) với
Phương trình (1) là phương trình chính tắc của elip.
III. Liên hệ giữa đường tròn và đường elip
+ Từ hệ thức ta thấy nếu tiêu cự của elip càng nhỏ thì b càng gần bằng a, tức là trục nhỏ của elip càng gần bằng trục lớn. Lúc đó elip có dạng gần như đường tròn
+ Trong mặt phẳng Oxy cho đường tròn (C) có phương trình . Với mỗi điểm M (x; y) thuộc đường tròn ta xét điểm M’(x’; y’) sao cho : với (0 < b < a) thì tập hợp các điểm M’ có tọa độ thỏa mãn phương trình:
là một elip (E). Khi đó ta nói đường tròn (C) được co thành elip (E).
Xem thêm
Phương trình đường elip (Lý thuyết, công thức) các dạng bài tập và cách giải
Câu 3:
21/07/2024Elip \(\left( E \right):{x^2} + 5{y^2} = 25\) có độ dài trục lớn bằng:
Đáp án đúng là: D
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có độ dài trục lớn \({A_1}{A_2} = \)2a.
Xét \(\left( E \right):{x^2} + 5{y^2} = 25\)\( \Leftrightarrow \frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{5} = 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 25\\{b^2} = 5\end{array} \right.\)\( \Rightarrow a = 5\,\,\)\( \Rightarrow \,{A_1}{A_2} = \)2.5 = 10.
Câu 4:
23/07/2024Elip \(\left( E \right):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\) có độ dài trục bé bằng:
Đáp án đúng là: C
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có độ dài trục bé \({B_1}{B_2} = \)2b.
Xét \(\left( E \right):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\) \( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 100\\{b^2} = 64\end{array} \right.\)\( \Rightarrow b = 8\)\( \Rightarrow \,\,{B_1}{B_2} = \)2.8 = 16.
Câu 5:
23/07/2024Elip \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\) có tổng độ dài trục lớn và trục bé bằng:
Đáp án đúng là: C
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có độ dài trục lớn \({A_1}{A_2} = \) 2a và độ dài trục bé là \({B_1}{B_2} = \)2b. Khi đó, xét \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\)\( \Leftrightarrow \frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{4} = 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 64\\{b^2} = 4\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}a = 8\\b = 2\end{array} \right.\)\( \Rightarrow \,\,{A_1}{A_2} + {B_1}{B_2} = \)2.a + 2.b = 2.8 + 2.2 = 20.
Câu 6:
21/07/2024Đáp án đúng là: B
Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c (c > 0). Hypebol (H) là tập hợp điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\) với a là một số không đổi và a < c;
Câu 7:
21/07/2024Dạng chính tắc của hypebol là?
Đáp án đúng là: B
Dạng chính tắc của hypebol là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
Câu 8:
22/07/2024Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây đúng?
Đáp án đúng là: A
Nếu \({c^2} = {a^2} + {b^2}\) thì (H) có các tiêu điểm là \({F_1}\)(c; 0), \({F_2}\)(-c; 0);
Câu 9:
12/07/2024Cho elip \[\left( E \right):4{x^2} + 9{y^2} = 36\]. Tìm mệnh đề sai trong các mệnh đề sau:
Đáp án đúng là: C
Ta có: \[\left( E \right):4{x^2} + 9{y^2} = 36\]\[ \Leftrightarrow \]\[\left( E \right):\frac{{{x^2}}}{{{3^2}}} + \frac{{{y^2}}}{{{2^2}}} = 1\]
\[ \Rightarrow \]\[\left\{ \begin{array}{l}a = 3\\b = 2\\c = \sqrt {{a^2} - {b^2}} = \sqrt 5 \end{array} \right.\]
Do đó, (E) có tiêu cự bằng 2.c = \[2\sqrt 5 \], trục lớn bằng 6, trục bé bằng 4, tỉ số \[\frac{c}{a} = \frac{{\sqrt 5 }}{3}.\]
Câu 10:
23/07/2024Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây sai?
Đáp án đúng là: D
Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a, b > 0, \({c^2} = {a^2} + {b^2}\) (c > 0) với \({c^2} = {a^2} + {b^2}\) (c > 0), có:
Tọa độ các đỉnh nằm trên trục thực là \({A_1}\left( {a;0} \right)\), \({A_1}\left( { - a;0} \right)\). Do đó A đúng.
Tọa độ các đỉnh nằm trên trục ảo là \({B_1}\left( {0;b} \right)\), \({A_1}\left( {0; - b} \right)\). Do đó B đúng.
Độ dài tiêu cự là 2c. Do đó C đúng.
Độ dài trục lớn là 2a. Do đó D sai.
Câu 11:
17/07/2024Định nghĩa nào sau đây là định nghĩa đường parabol?
Đáp án đúng là: A
Cho điểm F cố định và một đường thẳng \(\Delta \) cố định không đi qua F. Parabol (P) là tập hợp các điểm M sao cho khoảng cách từ M đến F bằng khoảng cách từ M đến \(\Delta \).
Câu 12:
22/07/2024Dạng chính tắc của Parabol là:
Đáp án đúng là: A
Dạng chính tắc của Parabol là \({y^2} = 2px\)(p > 0).
Câu 13:
22/07/2024Cho parabol (P) có phương trình chính tắc là \({y^2} = 2px\), với p > 0. Khi đó khẳng định nào sau đây sai?
Đáp án đúng là: A
Khẳng định sai: Trục đối xứng của parabol là trục Oy.
Cần sửa lại: Trục đối xứng của parabol là trục Ox.
Câu 14:
12/07/2024Đường thẳng nào là đường chuẩn của parabol \({y^2} = \frac{3}{2}x\)
Đáp án đúng là: D
Phương trình chính tắc của parabol \(\left( P \right):{y^2} = 2px\)
\( \Rightarrow p = \frac{3}{4}\) \( \Rightarrow \) Phương trình đường chuẩn là \(x = - \frac{p}{2}\)=\( - \frac{3}{8}\) .
Câu 15:
21/07/2024Elip \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\) có tiêu cự bằng:
Đáp án đúng là: D
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có tiêu cự là 2c
Xét \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 4\end{array} \right.\)
\( \Rightarrow {c^2} = {a^2} - {b^2} = 5\)\( \Rightarrow c = \sqrt 5 \)\(\, \Rightarrow 2c = 2\sqrt 5 \).
Có thể bạn quan tâm
- Trắc nghiệm Toán 10 Bài 22. Ba đường Conic có đáp án (595 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 22. Ba đường Conic có đáp án (380 lượt thi)
- Thi Online Trắc nghiệm Toán 10 KNTT Bài 22. Ba đường conic (Phần 2) có đáp án (984 lượt thi)
Các bài thi hot trong chương
- Thi Online Trắc nghiệm Toán 10 KNTT Bài 20. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách. (Phần 2) có đáp án (779 lượt thi)
- Thi Online Trắc nghiệm Toán 10 KNTT Bài 19. Phương trình đường thẳng (Phần 2) có đáp án (565 lượt thi)
- Thi Online Trắc nghiệm Toán 10 KNTT Bài ôn tập cuối chương 7 (Phần 2) có đáp án (499 lượt thi)
- Thi Online Trắc nghiệm Toán 10 KNTT Bài 21. Đường tròn mặt phẳng toạ độ (Phần 2) có đáp án (494 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 19. Phương trình đường thẳng có đáp án (372 lượt thi)
- Trắc nghiệm Toán 10 Bài 20. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách có đáp án (338 lượt thi)
- Trắc nghiệm Toán 10 Bài 21. Đường tròn trong mặt phẳng toạ độ có đáp án (316 lượt thi)
- Trắc nghiệm Toán 10 Bài ôn tập chương 7 có đáp án (286 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 20. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách có đáp án (279 lượt thi)
- Trắc nghiệm Toán 10 Bài 19. Phương trình đường thẳng có đáp án (272 lượt thi)