Trang chủ Lớp 11 Toán 299 câu trắc nghiệm Tổ hợp xác suất từ đề thi đại học có lời giải chi tiết(P1)

299 câu trắc nghiệm Tổ hợp xác suất từ đề thi đại học có lời giải chi tiết(P1)

299 câu trắc nghiệm Tổ hợp xác suất từ đề thi đại học có lời giải chi tiết(P1) (Đề số 2)

  • 3142 lượt thi

  • 40 câu hỏi

  • 60 phút

Danh sách câu hỏi

Câu 2:

23/07/2024

Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau lập từ các chữ số 1, 2, 3, 4, 5, 6

Xem đáp án

Chọn D

Mỗi số lập được là một chỉnh hợp chập 3 của 6 phần tử.

Vậy lập được tất cả là A63 = 120 số


Câu 3:

20/07/2024

Cho tập hợp A = {1,2,3,...,10}.  Một tổ hợp chập 2 của các phần tử tập A là 

Xem đáp án

Chọn A

Một tổ hợp chập 2 của các phần tử tập A là một tập con bất kỳ chứa 2 phần tử của A.


Câu 4:

10/11/2024

Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ 2 chức vụ tổ trưởng và tổ phó.

Xem đáp án

Đáp án đúng là D

Lời giải

Theo yêu cầu bài toán thì chọn ra 2 học sinh từ 10 học sinh có quan tâm đến chức vụ của mỗi người nên mỗi cách chọn sẽ là một chỉnh hợp chập 2 của 10 phần tử.

*Phương pháp giải:

Áp dụng công thức chình hợp

*Lý thuyết:

Một chỉnh hợp chập k của n là một cách sắp xếp có thứ tự k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 1 ≤ k ≤ n).

Số các chỉnh hợp chập k của n, kí hiệu là Ank, được tính bằng công thức:

Ank = n.(n – 1)…(n – k + 1) hay Ank=n!(nk)!(1 ≤ k ≤ n).

Chú ý :

+ Hoán vị sắp xếp tất cả các phần tử của tập hợp, còn chỉnh hợp chọn ra một số phần tử và sắp xếp chúng.

+ Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử đó. Vì vậy Pn = Ann

Xem thêm

Công thức tính tổ hợp chập k của n và cách giải các dạng bài tập 

TOP 40 câu Trắc nghiệm Hoán Vị - Chỉnh Hợp – Tổ Hợp (có đáp án ) – Toán 11 


Câu 5:

22/07/2024

Với k, n là số nguyên dương 1k ≤ n. Đẳng thức nào sau đây là đúng?

 

Xem đáp án

Chọn D

Theo tính chất của tổ hợp.


Câu 6:

23/07/2024

Chọn kết luận đúng

Xem đáp án

Chọn A

Theo công thức số chỉnh hợp.

 Mặt khác 


Câu 7:

22/07/2024

Trong các công thức sau, công thức nào đúng?


Câu 9:

24/11/2024

Cho tập hợp S gồm 5 phần tử. Số tập con gồm 2 phần tử của S là:

Xem đáp án

Đáp án đúng là C

Lời giải:

Số tập hợp con có 2 phần tử của A là C52.

*Phương pháp giải:

Sử dụng định nghĩa:

Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.

Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.

*Lý thuyết:

1. Định nghĩa

Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.

Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.

Ví dụ: Bạn Mai có 4 chiếc váy màu hồng, màu đỏ, màu trắng, màu tím. Mai muốn chọn 3 trong 4 chiếc váy để mang đi du lịch. Hãy viết các tổ hợp 3 của 4 chiếc áo váy đó.

Hướng dẫn giải

Các tổ hợp chập 3 của 4 chiếc váy là :

Hồng – đỏ – trắng ; Hồng – đỏ – tím ; Đỏ – trắng – tím ; Hồng – trắng – tím.

Vậy ta có 4 tổ hợp chập 3 của 4 chiếc váy là : Hồng – đỏ – trắng ; Hồng – đỏ – tím ; Đỏ – trắng – tím ; Hồng – trắng – tím.

2. Số các tổ hợp

Nhận xét : Một tổ hợp chập k của n phần tử nhiều gấp k! lần số tổ hợp chập k của n phần tử đó.

Kí hiệu là Cnk là số tổ hợp chập k của n phần tử với (1 ≤ k ≤ n). Ta có : Cnk=Ankk!

Quy ước 0! = 1 ; Cn0=1.

Với những quy ước trên, ta có công thức sau: Cnk=n!(nk)!k! (với 0 ≤ k ≤ n).

Ví dụ: Một tổ có 8 người, bạn tổ trưởng muốn cử ra 4 bạn đi tập văn nghệ. Hỏi có bao nhiêu cách chọn ?

Hướng dẫn giải

Mỗi cách chọn 4 bạn trong 8 bạn đi trực nhật là một tổ hợp chập 4 của 8.

Ta có C84=8!(84)!4!=70.

Vậy có 70 cách chọn 4 trong 8 bạn đi tập văn nghệ.

3. Tính chất của các số Cnk

Ta có hai đẳng thức sau : Cnk=Cnnk (0 ≤ k ≤ n) và Cn1k1+Cn1k=Cnk (1 ≤ k < n).

Ví dụ: Ta có : C106=C10106=210 ; C10161+C1016=C106=210.

Xem thêm

Lý thuyết Tổ hợp chi tiết – Toán lớp 10 Cánh diều


Câu 10:

17/07/2024

Cho nN  và n! = 1. Số giá trị của n thỏa mãn giả thiết đã cho là

Xem đáp án

Chọn B

Ta có 0! = 1 và 1! = 1. Vậy có 2 giá trị của  thỏa mãn.


Câu 11:

05/11/2024

Với k  và n  là hai số nguyên dương tùy ý thỏa mãn k ≤ n. Mệnh đề nào sau đây đúng?

Xem đáp án

Đáp án đúng là :B.

*Phương pháp giải:

Dựa vào công thức chỉnh hợp

*Lý thuyết

Dựa vào công thức tính số các chỉnh hợp chập k của một tập hợp có nphần tử và công thức tính số các tổ hợp chập  của một tập hợp có n phần tử nên ta có mệnh đề đúng là Ank = n!(n-k)!

Xem them


Câu 12:

17/07/2024

Số các tổ hợp chập k của một tập hợp có n phần tử 1  k n là :

Xem đáp án

Chọn B

Do  nên Cnk = Ankk!.


Câu 13:

22/07/2024

Cho tập hợp M có 10 phần tử. Số tập hợp con gồm 2 phần tử của M

Xem đáp án

Chọn C

Số tập hợp con gồm k phần tử của tập n phần tử là: Cnk  => Số tập hợp con gồm 2 phần tử của tập hợp M là C102.


Câu 14:

21/07/2024

Có bao nhiêu cách chọn hai học sinh từ một nhóm gồm 41 học sinh?

Xem đáp án

Chọn D

Số cách chọn hai học sinh từ một nhóm gồm 41 học sinh là số tổ hợp chập 2 của 41, tức có C412 cách chọn.


Câu 17:

21/07/2024

Cho k, n, 1 kn  là các số nguyên dương bất kì. Mệnh đề nào sau đây sai?

Xem đáp án

Chọn B

Số các chỉnh hợp chập k của một tập có n phần tử, kí hiệu là: Ank = n!(n-k)!, (1 kn)

=> D đúng

Số các tổ hợp chập k của một tập có n phần tử, kí hiệu là: Cnk = n!k!(n-k)!, (1 kn)

=> C đúng

Ta có : 

=> A đúng


Câu 18:

22/07/2024

Cho n2, n N thỏa mãn : An 3 +Cn2 = 14n. Giá trị của n là

Xem đáp án

Chọn C

Sử dụng công thức: 

Ta có: An 3 +Cn2 = 14n


Câu 19:

23/07/2024

Có bao nhiêu cách chia 20 chiếc bút chì giống nhau cho ba bạn Bắc, Trung, Nam sao cho mỗi bạn được ít nhất một chiếc bút chì  

Xem đáp án

Chọn D

Xếp 20 chiếc bút chì thành một hàng ngang, giữa chúng có 19 chỗ trống.

Số cách chia bút chì thỏa mãn điều kiện đề bài chính là số cách đặt 2  “vách ngăn” vào 2 chỗ trống trong số 19 chỗ trống nói trên (mỗi chỗ trống được chọn đặt 1 “vách ngăn”), tức là bằng C192 = 171.


Câu 20:

22/07/2024

Mệnh đề nào sau đây sai ?

Xem đáp án

Chọn C

A đúng. Cứ 4 phần tử bất kì từ tập 6 phần tử ta sẽ được một tập con của tập 6 phần tử. Số tập con có 4 phần tử là C64.

B đúng. Khi đảo vị trí của 4 quyển sách sẽ được 1 cách sắp xếp mới (có sắp thứ tự). Do vậy số cách xếp 4 quyển sách vào 4 trong 6 vị trí trên giá là A64.

C sai. Mỗi cách lựa chọn và xếp thứ tự 4 học sinh từ nhóm 6 học sinh là một chỉnh chập 4 của 6 học sinh. Vậy số cách lựa chọn và xếp thứ tự 4 học sinh từ nhóm 6 học sinh là A64.

 

D đúng. Mỗi cách sắp xếp 4 quyển sách trong 6 quyển sách vào 4 vị trí là một chỉnh hợp chập 4 của 6 quyển sách. Vậy số cách sắp xếp 4 quyển sách trong 6 vào 4 vị trí trên giá là A64.

 

Phân tích: Đây là kiến liên quan đến bài toán đếm. Yêu cầu học sinh phải hiểu được tổ hợp và chỉnh hợp. Sự lựa chọn có sắp thứ tự và không sắp thứ tự.

- Cho tập A gồm n phần tử và số nguyên k với 1kn Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự ta được một chỉnh hợp chập k của n phần tử của A. Kí hiệu Ank.

 

- Cho tập A có n phần tử và số nguyên k với 1kn . Mỗi tập con của A có k phần tử được gọi là một tổ hợp chập k của n phần tử của A. Kí hiệu Cnk.


Câu 21:

23/07/2024

Mệnh đề nào sau đây sai ?


Câu 22:

23/07/2024

Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây không phải là phương trình mặt cầu? 

Xem đáp án

Chọn B

Cho (S): 

Điều kiện để (S) là phương trình của một mặt cầu là: 

Ở câu A, nên đây là phương trình của mặt cầu.

Ở câu B,  = -11 < 0 nên đây không phải là phương trình của mặt cầu.

Ở câu C,  = 9 > 0 nên đây là phương trình của mặt cầu.

Ở câu D, nên đây là phương trình của mặt cầu.


Câu 24:

21/07/2024

Có bao nhiêu cách sắp xếp 5 học sinh theo một hàng ngang?

Xem đáp án

Chọn D

Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử. Vậy có 5! = 120 cách.


Câu 25:

18/07/2024

Số các chỉnh hợp chập k của một tập hợp gồm n phần tử (với k,n *, k  n). 

Xem đáp án

Chọn B

Ta có số chỉnh hợp chập k của một tập hợp gồm n phần tử là: .


Câu 26:

21/07/2024

Mệnh đề nào sau đây sai?


Câu 27:

18/07/2024

Trong tủ quần áo của bạn An có 4 chiếc áo khác nhau và 3 chiếc quần khác nhau. Hỏi bạn An có bao nhiêu cách để chọn 1 bộ quần áo để mặc?

Xem đáp án

Chọn D

Chọn một bộ quần áo, cần thực hiện liên tiếp hai hành động:

Hành động 1 - chọn áo: có 4 cách chọn.

Hành động 2 - chọn quần: ứng với mỗi cách chọn áo có 3 cách chọn quần.

Vậy số cách chọn một bộ quần áo là: 4.3 = 12 (cách).


Câu 28:

22/07/2024

Cho tập M = {1;2;3;4;5;6;7;8;9}. Có bao nhiêu tập con có 4 phần tử lấy từ các phần tử của tập M?

Xem đáp án

Chọn B

Theo Định nghĩa Tổ hợp. Ta có số tập con có 4 phần tử lấy từ các phần tử của tập 4 là C94.


Câu 29:

21/07/2024

Cho tập hợp A gồm có 9 phần tử. Số tập con gồm có 4 phần tử của tập hợp A là

Xem đáp án

Chọn A

Ta lấy 4 phần tử bất kì trong tập hợp gồm 9 phần tử có C94 cách.

Vậy số tập con gồm 4 phần tử là C94


Câu 32:

22/07/2024

Một tổ có 10 học sinh. Số cách chọn ra 2 học sinh từ tổ đó để giữ 2 chức vụ tổ trưởng và tổ phó là

Xem đáp án

Chọn B

Chọn 2 trong 10 học sinh để giữ 2 chức vụ tổ trưởng và tổ phó (có thứ tự ) là chỉnh hợp chập 2 của 10 => A102 (cách).


Câu 33:

23/07/2024

Với k và n là hai số nguyên dương tùy ý thỏa mãn k ≤ n, mệnh đề nào dưới đây đúng?

Xem đáp án

Chọn D

Công thức chỉnh hợp.


Câu 34:

17/07/2024

Số cách xếp 3 người ngồi vào 5 ghế xếp thành hàng ngang sao cho mỗi người ngồi một ghế là

Xem đáp án

Chọn A

Mỗi cách xếp 3 người ngồi vào 5 ghế xếp thành hàng ngang sao cho mỗi người ngồi một ghế là một chỉnh hợp chập 3 của 5 phần tử. Do đó số cách xếp là A53


Câu 36:

22/07/2024

Cho n điểm phân biệt trên mặt phẳng (n , n > 2). Số véctơ khác 0 có cả điểm đầu và điểm cuối là các điểm đã cho bằng

Xem đáp án

Chọn A

Hai điểm bất kì trong n điểm trên tạo thành hai véctơ thỏa mãn yêu cầu bài toán. Nên số các véc tơ đó là: 

Nhận xét: Có thể hiểu mỗi véctơ là một chỉnh hợp chập 2 của n điểm. Nên số véctơ là:



Câu 37:

22/07/2024

Với k và n là hai số nguyên dương tùy ý thỏa mãn k  n, mệnh đề nào dưới đây sai?

Xem đáp án

Chọn B

Với k và n là hai số nguyên dương thỏa k  n ta có:

Số các chỉnh hợp chập k của n phần tử là: Ank = n!(n-k)!, nên câu B sai.


Câu 38:

22/07/2024

Cho tập hợp A có 26 phần tử. Hỏi A có bao nhiêu tập con gồm 6 phần tử?

Xem đáp án

Chọn A

Số tập con có 6 phần tử của tập A là C266


Câu 39:

22/07/2024

Một lớp học có 40 học sinh, biết rằng các bạn đều có khả năng được chọn như nhau, số cách chọn ra ba bạn để phân công làm tổ trưởng tổ 1, tổ 2 và tổ 3 là

Xem đáp án

Chọn A

Mỗi cách chọn ra 3 học sinh từ 40 học sinh để làm tổ trưởng tổ 1, tổ 2, tổ 3 là một chỉnh hợp chập 3 của 40 phần tử, vậy có: A403 (cách).


Câu 40:

21/07/2024

Một tập A có n phần tử, với n là số tự nhiên lớn hơn 1, số tập con khác rỗng của tập A là 

Xem đáp án

Chọn C

Mỗi tập con khác rỗng của tập A là một tổ hợp chập k (1 n) của n phần tử của tập A.

Số tập con khác rỗng của tập A gồm k phần tử (1 n)Cnk.

Vậy, số tập con khác rỗng của tập A sẽ là: 


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm