100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao (P1)
100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao (P1) (Đề số 4)
-
1512 lượt thi
-
25 câu hỏi
-
50 phút
Danh sách câu hỏi
Câu 1:
21/07/2024Xếp 30 quyển truyện khác nhau được đánh số từ 1 đến 30 thành một dãy sao cho bốn quyển 1, 3, 5 và 7 không đặt cạnh nhau. Hỏi có bao nhiêu cách?
Xếp 30 quyển truyện khác nhau có số cách là 30!
Ta tính số cách xếp 4 quyển 1, 3, 5, 7 cạnh nhau:
+) Hoán vị 1, 3, 5, 7 ta được 4! Cách.
+) Khi đã xếp 1, 3, 5, 7 cạnh nhau thì còn 26 vị trí, ứng với 26 vị trí này thì có 26! cách xếp.
Do đó xếp 4 quyển 1, 3, 5, 7 cạnh nhau có số cách là 4!.26!
Tóm lại có 30! – 4!26! cách xếp thỏa mãn.
Chọn B.
Câu 2:
16/07/2024Cho một hộp 10 viên bi gồm 6 bi xanh và 4 bi vàng (mỗi viên bi có kích thước khác nhau). Hỏi có bao nhiêu cách xếp 10 viên bi vào hộp thành một hàng ngang sao cho không có bi vàng nào cạnh nhau?
Xếp 6 viên bi xanh có 6! cách xếp, khi đó 6 viên bi xanh sẽ tạo thành 7 chỗ trống.
Xếp 4 viên bi vàng vào 7 chỗ trống đó là cách.
Do đó có cách xếp.
Chọn A.
Câu 4:
22/07/2024Từ các chữ số 0, 1, 2, 3, 5, 6, 7 lập được bao nhiêu số có bốn chữ số khác nhau và chia hết cho 15?
Ta có
• TH1. Nếu d = 0 thì a + b + c chia hết cho 3
Mỗi bộ sau đều lập được 6 số: (1;2;3),(1;2;6),(1;3;5),(1;5;6),(2;3;7),(2;6;7),(3;5;7),(5;6;7)
• TH2. Nếu d = 5 thì a + b + c + 5 chia hết cho 3
Mỗi bộ sau đều lập được 4 số: (0;1;3);(0;1;6);(0; 3; 7); (0;6;7).
Mỗi bộ sau đều lập được 6 số: (1;2;7);(1;3;6); (3;6;7)
Tóm lại có tất cả 6.8+4.4+6.3=82 số thỏa mãn.
Chọn B.
Câu 5:
21/07/2024Tìm hệ số cuả trong khai triển đa thức
Lời giải.
Cách 1:
Trong khai triển trên ta thấy bậc của x trong 3 số hạng đầu nhỏ hơn 8, bậc của x trong 4 số hạng cuối lớn hơn 8.
Do đó x8 chỉ có trong số hạng thứ tư, thứ năm với hệ số tương ứng là:.
Vậy hệ số cuả x8 trong khai triển đa thức là:
Cách 2: Ta có:
với 0 ≤ k ≤ n ≤ 8.
Số hạng chứa x8 ứng với 2n + k = 8 ⇒ k = 8 -2n là một số chẵn.
Thử trực tiếp ta được k = 0, n =4 và k = 2, n = 3.
Vậy hệ số của x8 là
Chọn C.
Câu 6:
19/07/2024Với n là số nguyên dương, gọi là hệ số của trong khai triển thành đa thức của . Tìm n để
Ta có :
Dễ dàng kiểm tra n=1; n=2 không thoả mãn điều kiện bài toán.
Với n ≥ 3 thì dựa vào khai triển ta chỉ có thể phân tích
Do đó hệ số của x3n-3 trong khai triển thành đa thức của
Suy ra
Vậy n= 7là giá trị cần tìm.
Chọn C.
Câu 7:
16/07/2024Tính tổng
Xét số hạng tổng quát.
Cho k chạy từ 1 đến 2018 ta được:
Cho x=1 suy ra
Chọn A.
Câu 8:
20/07/2024Tổng của ba số hạng liên tiếp lập thành cấp số cộng trong dãy số sau có giá trị là
Giả sử 3 số theo thứ tự đó lập thành một cấp số cộng khi và chỉ khi .
Với n=8 thì
Với n=13 thì
Chọn A.
Câu 10:
18/07/2024Tổng các hệ số nhị thức Niu – tơn trong khai triển (1+x)3n bằng 64. Số hạng không chứa x trong khai triển là:
Ta có:
Chọn x=1. Ta có tổng hệ số trong khai triển bằng:
Lại có:
Số hạng không chứa x suy ra
Do đó số hạng không chứa x là:
Chọn D.
Câu 11:
16/07/2024Một con súc sắc đồng chất được gieo 6 lần. Xác suất để được một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần là
Ta có n(Ω)= 6.6.6.6.6.6 = 66
Có các trường hợp sau:
1.Số bằng 5 xuất hiện đúng 5 lần ; 1 lần ra mặt khác 5 : có 5 cách chọn số khác 5.
Số kết quả thuận lợi là
2. Số bằng 5 xuất hiện đúng 6 lần có 1 kết quả thuận lợi.
3. Số bằng 6 xuất hiện đúng 5 lần; 1 lần ra mặt khác 6: có 5 cách chọn số khác 6.
Số kết quả thuận lợi là
4. Số bằng 6 xuất hiện đúng 6 lần có 1kết quả thuận lợi.
Vậy xác suất để được một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần là
Chọn A.
Câu 12:
16/07/2024Bạn Tít có một hộp bi gồm 2 viên đỏ và 8 viên trắng. Bạn Mít cũng có một hộp bi giống như của bạn Tít. Từ hộp của mình, mỗi bạn lấy ra ngẫu nhiên 3 viên bi. Tính xác suất để Tít và Mít lấy được số bi đỏ như nhau
Số phần tử của không gian mẫu là:
Ta tính số phần tử của không gian thuận lợi
· Cả hai bạn đều lấy ra 3 viên bi trắng có
· Cả hai bạn lấy ra 1 bi trắng và 2 bi đỏlà:
· Cả hai bạn lấy ra 2 bi trắng và 1 bi đỏ:
Số kết quả thuận lợi là n(A)=3136+64+3136=6336
Xác suất biến cố là : P(A) = 11/25
Chọn A.
Câu 13:
12/01/2025Cho đa giác đều 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong 12 đỉnh của đa giác. Xác suất để đỉnh được chọn tạo thành tam giác đều là
Đáp án đúng: A
* Lời giải:
Số phần tử không gian mẫu: .
(chọn 3 đỉnh bất kì từ 12 đỉnh của đa giác ta được một tam giác)
Gọi A: 3 đỉnh được chọn tạo thành tam giác đều ”.
(Chia 12 đỉnh thành 3 phần. Mỗi phần gồm 4 đỉnh liên tiếp nhau. Mỗi đỉnh của tam giác đều ứng với một phần ở trên.Chỉ cần chọn 1 đỉnh thì 2 đỉnh còn lại xác định là duy nhất).
Ta có: .
Khi đó: .
* Phương pháp giải:
Tìm số phần tử không gian mẫu
- Tìm số phần tử thuận lợi của biến cố A đã cho
- Tính xác suất
* Lý thuyết nắm thêm
1. Quy tắc cộng
- Quy tắc cộng: Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m + n cách thực hiện.
- Quy tắc cộng được phát biểu ở trên thực chất là quy tắc đếm số phần tử của hợp hai tập hợp hữu hạn không giao nhau, được phát biểu như sau:
Nếu A và B là các tập hợp hữu hạn và không giao nhau thì:
- Chú ý: Quy tắc cộng có thể mở rộng cho nhiều hành động.
2. Quy tắc nhân
- Quy tắc nhân: Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m.n cách hoàn thành công việc.
- Chú ý: Quy tắc nhân có thể mở rộng cho nhiều hành động liên liếp.
3. Hoán vị
3.1 Định nghĩa
- Định nghĩa: Cho tập hợp A gồm n phần tử (n ≥ 1). Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó.
- Nhận xét: Hai hoán vị của n phần tử khác nhau ở thứ tự sắp xếp.
Chẳng hạn, hai hoán vị abc và cab của ba phần tử a; b; c là khác nhau.
3.2 Số các hoán vị
Kí hiệu: Pn là số các hoán vị của n phần tử.
- Định lí: Pn = n.(n – 1).(n – 2)….2.1
- Chú ý: Kí hiệu n.(n – 1)…2.1 là n! (đọc là n là giai thừa), ta có: Pn = n!.
4. Chỉnh hợp
4.1 Định nghĩa.
- Cho tập hợp A gồm n phần tử (n ≥ 1).
Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
4.2 Số các chỉnh hợp
- Kí hiệu là số các chỉnh hợp chập k của n phần tử (1 ≤ k ≤ n) .
- Định lí:
5. Tổ hợp
5.1 Định nghĩa.
- Giả sử tập A có n phần tử (n ≥ 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho.
- Chú ý: Số k trong định nghĩa cần thỏa mãn điều kiện 1 ≤ k ≤ n. Tuy vậy, tập hợp không có phần tử nào là tập rỗng nên ta quy ước gọi tổ hợp chập 0 của n phần tử là tập rỗng.
- Ví dụ 4. Cho tập A = {3; 4; 5; 6}.
Ta liệt kê các tổ hợp chập 3 của A là: {3; 4; 5}; {3; 4; 6}; {3; 5; 6}; {4; 5; 6}.
5.2 Số các tổ hợp.
Kí hiệu là số các tổ hợp chập k của n phần tử ( 0 ≤ k ≤ n).
- Định lí: .
5.3 Tính chất của các số
a) Tính chất 1.
Ví dụ 7. .
6. Công thức nhị thức Niu- tơn
Ta có:
- Công thức nhị thức Niu – tơn.
- Hệ quả:
Với a = b = 1 ta có:
Với a = 1; b = – 1 ta có:
- Chú ý:
Trong biểu thức ở vế phải của công thức (1):
a) Số các hạng tử là n + 1.
b) Các hạng tử có số mũ của a giảm dần từ n đến 0; số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n (quy ước ).
c) Các hệ số của mỗi cặp hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.
Xem thêm các bài viết liên quan hay, chi tiết:
Câu 14:
20/07/2024Một hộp đựng 11 tấm thẻ được đánh số từ 1 đến 11. Chọn ngẫu nhiên 6 tấm thẻ. Gọi P là xác suất để tổng số ghi trên 6 tấm thẻ ấy là một số lẻ. Khi đó P bằng:
Số phần tử của không gian mẫu là .
Gọi A:”tổng số ghi trên 6 tấm thẻ ấy là một số lẻ”.
Từ 1 đến 11 có 6 số lẻ và 5 số chẵn.Để có tổng là một số lẻ ta có 3 trường hợp.
Trường hợp 1: Chọn được 1 thẻ mang số lẻ và 5 thẻ mang số chẵn có: cách.
Trường hợp 2: Chọn được 3 thẻ mang số lẻ và 3 thẻ mang số chẵn có: cách.
Trường hợp 2: Chọn được 5 thẻ mang số lẻ và 1 thẻ mang số chẵn có: cách.
Do đó n(A)=6+200+30=236
Vậy .
Chọn D.
Câu 15:
21/07/2024Ba người cùng bắn vào 1 bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8 ; 0,6; 0,5. Xác suất để có đúng 2 người bắn trúng đích bằng:
Gọi X là biến cố: “có đúng 2 người bắn trúng đích “
· Gọi A là biến cố: “người thứ nhất bắn trúng đích P(A)=0,8;
Gọi B là biến cố: “người thứ hai bắn trúng đích P(B)=0,6;
· Gọi C là biến cố: “người thứ ba bắn trúng đích P(C)=0,5;
Ta thấy biến cố A, B, C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có:
=0,8.0,6.0,5+0,8.0,4.0,5+0,2.0,6.0,5=0,46
Chọn C.
Câu 16:
18/07/2024Có 13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 12 có 8 học sinh nam và 3 học sinh nữ, khối 11 có 2 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, tính xác suất để 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12.
Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12
Ta có các trường hợp thuận lợi cho biến cố A là:
● Trường hợp 1. Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có cách.
● Trường hợp 2. Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có cách.
● Trường hợp 3. Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có cách.
Suy ra số phần tử của biến cố A là
Vậy xác suất cần tính
Chọn D.
Câu 17:
20/07/2024Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp, tính xác suất để 6 viên bi được lấy ra có đủ cả ba màu.
Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi.
Suy ra số phần tử của không gian mẫu là
Gọi A là biến cố 6 viên bi được lấy ra có đủ cả ba màu . Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố tức là 6 viên bi lấy ra không có đủ ba màu như sau:
● Trường hợp 1. Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).
Do đó trường hợp này có cách.
● Trường hợp 2. Chọn 6 viên bi có đúng hai màu xanh và đỏ, có cách.
Chọn 6 viên bi có đúng hai màu đỏ và vàng, có cách.
Chọn 6 viên bi có đúng hai màu xanh và vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố .
Suy ra số phần tử của biến cố A là
Vậy xác suất cần tính
Chọn B.
Câu 18:
16/07/2024Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7. Hãy tính xác suất để cả hai động cơ đều chạy tốt ;
Gọi A là biến cố "Động cơ I chạy tốt", B là biến cố "Động cơ II chạy tốt"
C là biến cố "Cả hai động cơ đều chạy tốt".
Ta thấy A, B là hai biến cố độc lập với nhau và C=A.B
Ta có P(C)=P(AB)=P(A).P(B)= 0,8 . 0,7 = 0,56
Chọn A.
Câu 19:
22/07/2024Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7. Hãy tính xác suất để : Cả hai động cơ đều không chạy tốt
Chọn C.
Gọi D là biến cố "Cả hai động cơ đều chạy không tốt".
Gọi A là biến cố động cơ I chạy tốt : P(A) = 0, 8
Gọi B là biến cố động cơ II chạy tốt : P(B) = 0,7
Ta thấy D= .
Hai biến cố và độc lập với nhau nên P(D=(1-P(A)). (1-P(B))=0,06.
Câu 20:
16/07/2024Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7 . Hãy tính xác suất để : Có ít nhất một động cơ chạy tốt.
Gọi A là biến cố: động cơ I chạy tốt
Gọi B là biến cố: động cơ II chạy tốt
Gọi K là biến cố "Có ít nhất một động cơ chạy tốt"
Biến cố đối: : Cả hai động cơ không chạy tốt,
Hai biến cố A và B độc lập với nhau nên:
Do đó ; P(K) = 1- 0, 06 = 0,94.
Chọn D.
Câu 21:
22/07/2024Một đoàn tàu có 7 toa ở một sân ga. Có 7 hành khách từ sân ga lên tàu, mỗi người độc lập với nhau và chọn một toa một cách ngẫu nhiên. Tìm xác suất của các biến cố sau
A: “ Một toa 1 người, một toa 2 người, một toa có 4 người lên và bốn toa không có người nào cả”
Số cách lên toa của 7 người là:
Ta tìm số khả năng thuận lợi của A như sau
Chọn 3 toa có người lên:
Với toa có 4 người lên ta có: cách chọn
Với toa có 2 người lên ta có: cách chọn
Người cuối cùng cho vào toa còn lại nên có 1 cách
Theo quy tắc nhân ta có:
Do đó: .
Chọn A.
Câu 22:
21/07/2024Một đoàn tàu có 7 toa ở một sân ga. Có 7 hành khách từ sân ga lên tàu, mỗi người độc lập với nhau và chọn một toa một cách ngẫu nhiên. Tìm xác suất của các biến cố: mỗi toa có đúng 1 người lên.
Mỗi một cách lên toa thỏa yêu cầu bài toán chính là một hoán vị của 7 phần từ nên ta có:
Do đó:
Chọn D.
Câu 23:
16/07/2024Một con súc sắc không đồng chất sao cho mặt bốn chấm xuất hiện nhiều gấp 3 lần mặt khác, các mặt còn lại đồng khả năng. Tìm xác suất để xuất hiện một mặt chẵn
Gọi Ai là biến cố xuất hiện mặt i chấm ( i=1;2;3;4;5;6)
Ta có
Do
Gọi A là biến cố xuất hiện mặt chẵn, suy ra A = A2 ∪ A4 ∪ A6
Vì các biến cố Ai xung khắc nên:
Chọn A.
Câu 24:
17/07/2024Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ ba có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa, tính xác suất để trong 7 hoa được chọn có số hoa hồng bằng số hoa ly.
Không gian mẫu là số cách chọn ngẫu nhiên 7 hoa từ ba bó hoa gồm 21 hoa.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố “7 hoa được chọn có số hoa hồng bằng số hoa ly”. Ta có các trường hợp thuận lợi cho biến cố A là:
● Trường hợp 1. Chọn 1 hoa hồng, 1 hoa ly và 5 hoa huệ nên có cách.
● Trường hợp 2. Chọn 2 hoa hồng, 2 hoa ly và 3 hoa huệ nên có cách.
● Trường hợp 3. Chọn 3 hoa hồng, 3 hoa ly và 1 hoa huệ nên có cách.
Suy ra số phần tử của biến cố A là .
Vậy xác suất cần tính
Chọn D.
Bài thi liên quan
-
100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao (P1) (Đề số 1)
-
25 câu hỏi
-
30 phút
-
-
100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao (P1) (Đề số 2)
-
25 câu hỏi
-
50 phút
-
-
100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao (P1) (Đề số 3)
-
25 câu hỏi
-
50 phút
-
-
100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao (P1) (Đề số 5)
-
10 câu hỏi
-
20 phút
-
Có thể bạn quan tâm
- Trắc nghiệm Ôn chương 2 (có đáp án) (560 lượt thi)
- 100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1) (2017 lượt thi)
- 100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao (P1) (1511 lượt thi)
- Trắc nghiệm tổng hợp Chương 2 : Tổ hợp - Xác suất có đáp án (Phần 1) (667 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Nhị thức Niu-tơn (có đáp án) (963 lượt thi)
- Trắc nghiệm Hoán vị - Chỉnh hợp - Tổ hợp (có đáp án) (929 lượt thi)
- Trắc nghiệm Nhị thức Niu-tơn có đáp án (Thông hiểu) (862 lượt thi)
- Trắc nghiệm Hoán vị - Chỉnh hợp - Tổ hợp có đáp án (Thông hiểu) (815 lượt thi)
- Trắc nghiệm Quy tắc đếm có đáp án (Thông hiểu) (788 lượt thi)
- Trắc nghiệm Quy tắc đếm (có đáp án) (747 lượt thi)
- Trắc nghiệm Phép thử và biến cố (có đáp án) (744 lượt thi)
- Trắc nghiệm Xác suất của biến cố (có đáp án) (675 lượt thi)
- Trắc nghiệm Biến ngẫu nhiên rời rạc có đáp án (Nhận biết) (570 lượt thi)
- Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2) (511 lượt thi)