Câu hỏi:
22/07/2024 183Từ các chữ số 0, 1, 2, 3, 5, 6, 7 lập được bao nhiêu số có bốn chữ số khác nhau và chia hết cho 15?
A. 76
B. 82
C. 96
D. 72
Trả lời:
Ta có
• TH1. Nếu d = 0 thì a + b + c chia hết cho 3
Mỗi bộ sau đều lập được 6 số: (1;2;3),(1;2;6),(1;3;5),(1;5;6),(2;3;7),(2;6;7),(3;5;7),(5;6;7)
• TH2. Nếu d = 5 thì a + b + c + 5 chia hết cho 3
Mỗi bộ sau đều lập được 4 số: (0;1;3);(0;1;6);(0; 3; 7); (0;6;7).
Mỗi bộ sau đều lập được 6 số: (1;2;7);(1;3;6); (3;6;7)
Tóm lại có tất cả 6.8+4.4+6.3=82 số thỏa mãn.
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7. Hãy tính xác suất để : Cả hai động cơ đều không chạy tốt
Câu 3:
Một đoàn tàu có 7 toa ở một sân ga. Có 7 hành khách từ sân ga lên tàu, mỗi người độc lập với nhau và chọn một toa một cách ngẫu nhiên. Tìm xác suất của các biến cố: mỗi toa có đúng 1 người lên.
Câu 4:
Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7. Hãy tính xác suất để cả hai động cơ đều chạy tốt ;
Câu 5:
Một con súc sắc đồng chất được gieo 6 lần. Xác suất để được một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần là
Câu 6:
Xếp 30 quyển truyện khác nhau được đánh số từ 1 đến 30 thành một dãy sao cho bốn quyển 1, 3, 5 và 7 không đặt cạnh nhau. Hỏi có bao nhiêu cách?
Câu 7:
Tổng các hệ số nhị thức Niu – tơn trong khai triển (1+x)3n bằng 64. Số hạng không chứa x trong khai triển là:
Câu 8:
Một con súc sắc không đồng chất sao cho mặt bốn chấm xuất hiện nhiều gấp 3 lần mặt khác, các mặt còn lại đồng khả năng. Tìm xác suất để xuất hiện một mặt chẵn
Câu 9:
Với n là số nguyên dương, gọi là hệ số của trong khai triển thành đa thức của . Tìm n để
Câu 10:
Ba người cùng bắn vào 1 bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8 ; 0,6; 0,5. Xác suất để có đúng 2 người bắn trúng đích bằng:
Câu 11:
Cho đa giác đều 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong 12 đỉnh của đa giác. Xác suất để đỉnh được chọn tạo thành tam giác đều là
Câu 12:
Một đoàn tàu có 7 toa ở một sân ga. Có 7 hành khách từ sân ga lên tàu, mỗi người độc lập với nhau và chọn một toa một cách ngẫu nhiên. Tìm xác suất của các biến cố sau
A: “ Một toa 1 người, một toa 2 người, một toa có 4 người lên và bốn toa không có người nào cả”
Câu 13:
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp, tính xác suất để 6 viên bi được lấy ra có đủ cả ba màu.
Câu 14:
Một hộp đựng 11 tấm thẻ được đánh số từ 1 đến 11. Chọn ngẫu nhiên 6 tấm thẻ. Gọi P là xác suất để tổng số ghi trên 6 tấm thẻ ấy là một số lẻ. Khi đó P bằng:
Câu 15:
Có 13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 12 có 8 học sinh nam và 3 học sinh nữ, khối 11 có 2 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, tính xác suất để 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12.