Giải bài tập trang 47 Chuyên đề Toán 10 Bài 1 - Chân trời sáng tạo
Với Giải bài tập trang 47 Chuyên đề Toán 10 trong Bài 1: Elip sách Chuyên đề Toán lớp 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 47.
Giải bài tập trang 47 Chuyên đề Toán 10 Bài 1 - Chân trời sáng tạo
Thực hành 4 trang 47 Chuyên đề Toán 10:
Tìm toạ độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng của các elip sau:
a) ;
b) .
Lời giải:
a) Có a2 = 4, b2 = 1 a = 2, b = 1
Toạ độ hai tiêu điểm của elip là và
Phương trình đường chuẩn ứng với tiêu điểm F1 là
Δ1:
Phương trình đường chuẩn ứng với tiêu điểm F2 là
Δ2:
Vận dụng 4 trang 47 Chuyên đề Toán 10:
Lập phương trình chính tắc của elip có tiêu cự bằng 6 và khoảng cách giữa hai đường chuẩn là .
Lời giải:
Gọi phương trình chính tắc của elip đã cho là (a > b > 0).
Theo đề bài ta có:
– Elip có tiêu cự bằng 6, suy ra 2c = 6, suy ra c = 3.
– Khoảng cách giữa hai đường chuẩn là , suy ra
Vậy phương trình chính tắc của elip đã cho là
Bài 1 trang 47 Chuyên đề Toán 10:
Cho elip .
a) Tìm tâm sai, chiều dài, chiều rộng hình chữ nhật cơ sở của (E) và vẽ (E).
b) Tìm độ dài hai bán kính qua tiêu của điểm M(0; 6) trên (E).
c) Tìm toạ độ hai tiêu điểm và viết phương trình hai đường chuẩn của (E).
Lời giải:
a) Có a2 = 64, b2 = 36 a = 8, b = 6
Tâm sai của (E) là
Chiều dài hình chữ nhật cơ sở là 2a = 16, chiều rộng hình chữ nhật cơ sở là 2b = 12.
Vẽ (E):
b) hai bán kính qua tiêu của điểm M(0; 6) là MF1 = a + = 8 + = 8,
MF2 = a – = 8 – = 8.
Bài 2 trang 47 Chuyên đề Toán 10:
Tìm các điểm trên elip (E): có độ dài hai bán kính qua tiêu nhỏ nhất, lớn nhất.
Lời giải:
Xét điểm M có toạ độ là (x; y).
+) Xét khoảng cách từ M đến F1.
Theo công thức độ dài bán kính qua tiêu ta có MF1 = a + x.
Mặt khác, vì M thuộc elip nên –a ≤ x ≤ a
Vậy a – c ≤ MF1 ≤ a + c.
Vậy độ dài MF1 nhỏ nhất bằng a – c khi M có hoành độ là –a, lớn nhất bằng a + c khi M có hoành độ bằng a.
+) Xét khoảng cách từ M đến F2.
Theo công thức độ dài bán kính qua tiêu ta có MF2 = a – x.
Mặt khác, vì M thuộc elip nên –a ≤ x ≤ a
Vậy a + c ≥ MF2 ≥ a – c.
Vậy độ dài MF2 nhỏ nhất bằng a – c khi M có hoành độ là a, lớn nhất bằng a + c khi M có hoành độ bằng –a.
Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Giải bài tập trang 42, 43 Chuyên đề Toán 10 Bài 1
Giải bài tập trang 44 Chuyên đề Toán 10 Bài 1
Giải bài tập trang 45 Chuyên đề Toán 10 Bài 1
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo