Câu hỏi:
19/07/2024 153Trong các mệnh đề sau, mệnh đề nào không phải là định lí?
A. Điều kiện đủ để trong mặt phẳng, hai đường thẳng song song với nhau là hai đường thẳng ấy cùng vuông góc với đường thẳng thứ ba.
B. Điều kiện đủ để diện tích ta giác bằng nhau là hai ta giác ấy bằng nhau.
C. Điều kiện đủ để hai đường chéo của một tứ giác vuông góc với nhau là tứ giác ấy là hình thoi.
D. Điều kiện đủ để một số nguyên dương a có tận cùng bằng 5 là số đó chia hết cho 5.
Trả lời:
Đáp án D
Đáp án A: Trong mặt phẳng, nếu hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì chúng song song.
Mệnh đề đúng.
Đáp án B: Nếu hai tam giác bằng nhau thì diện tích của chúng bằng nhau.
Mệnh đề đúng.
Đáp án C: Nếu tứ giác là hình thoi thì nó có hai đường chéo vuông góc với nhau.
Mệnh đề đúng.
Đáp án D: Nếu một số nguyên dương chia hết cho 5 thì tận cùng của nó bằng 5.
Đây là mệnh đề sai vì còn xảy ra trường hợp tận cùng bằng 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tìm tập hợp tất cả các giá trị thực của x để mệnh đề P: “2x-10 ” là mệnh đề sai:
Câu 6:
Xét câu P(n): “n chia hết cho 12”. Với giá trị nào của n sau đây thì P(n) là mệnh đề đúng?
Câu 8:
Mệnh đề chứa biến: “ ” đúng với một trong những giá trị nào của x dưới đây?
Câu 9:
Kí hiệu X là tập hợp các cầu thủ x trong đội tuyển bóng rổ, P(x) là mệnh đề chứa biến “x cao trên 180 cm”. Mệnh đề “, P(x)” khẳng định rằng:
Câu 10:
Các phát biểu nào sau đây không thể là phát biểu của mệnh đề đúng P => Q
Câu 13:
Mệnh đề nào sau đây là phủ định của mệnh đề “Mọi động vật đều di chuyển”?
Câu 14:
Cho mệnh đề: “nếu một tứ giác là hình thang cân thì tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Câu 15:
Giải bài toán sau bằng phương pháp chứng minh phản chứng: “Chứng minh rằng với mọi x, y, z bất kì thì các bất đẳng thức sau không đồng thời xảy ra ”
Một học sinh đã lập luận tuần tự như sau:
(I) Giả định các đẳng thức xảy ra đồng thời.
(II) Thế thì nâng lên bình phương hai vế các bất đẳng thức, chuyển vế phải sang vế trái, rồi phân tích, ta được:
(x – y + z)(x + y – z) < 0
(y – z + x)(y + z – x) < 0
(z – x + y)(z + x – y) < 0
(III) Sau đó, nhân vế theo vế ta thu được:(x – y + z(x + y – z)(-x + y + z) < 0 (vô lí)
Lý luận trên, nếu sai thì sai từ giai đoan nào?