Câu hỏi:
21/07/2024 211Cho mệnh đề: “nếu một tứ giác là hình thang cân thì tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
A. Điều kiện cần để tứ giác là hình thang cân là tứ giác đó có hai đường chéo bằng nhau
B. Điều kiện đủ để tứ giác có hai đường chéo bằng nhau là tứ giác đó là hình thang cân
C. Điều kiện đủ dể tứ giác là hình thang cân là tứ giác đó có hai đường chéo bằng nhau
D. Cả A, B đều đúng
Trả lời:
Đáp án D
Mệnh đề “Nếu một tứ giác là hình thang cân thì tứ giác đó có hai đường chéo bằng nhau” có thể được phát biểu là:
+) “Điều kiện cần để tứ giác là hình thang cân là tứ giác đó có hai đường chéo bằng nhau” nên A đúng.
+) “Điều kiện đủ để tứ giác có hai đường chéo bằng nhau là tứ giác đó là hình thang cân” nên B đúng, C sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tìm tập hợp tất cả các giá trị thực của x để mệnh đề P: “2x-10 ” là mệnh đề sai:
Câu 6:
Xét câu P(n): “n chia hết cho 12”. Với giá trị nào của n sau đây thì P(n) là mệnh đề đúng?
Câu 8:
Mệnh đề chứa biến: “ ” đúng với một trong những giá trị nào của x dưới đây?
Câu 9:
Kí hiệu X là tập hợp các cầu thủ x trong đội tuyển bóng rổ, P(x) là mệnh đề chứa biến “x cao trên 180 cm”. Mệnh đề “, P(x)” khẳng định rằng:
Câu 10:
Các phát biểu nào sau đây không thể là phát biểu của mệnh đề đúng P => Q
Câu 12:
Mệnh đề nào sau đây là phủ định của mệnh đề “Mọi động vật đều di chuyển”?
Câu 14:
Giải bài toán sau bằng phương pháp chứng minh phản chứng: “Chứng minh rằng với mọi x, y, z bất kì thì các bất đẳng thức sau không đồng thời xảy ra ”
Một học sinh đã lập luận tuần tự như sau:
(I) Giả định các đẳng thức xảy ra đồng thời.
(II) Thế thì nâng lên bình phương hai vế các bất đẳng thức, chuyển vế phải sang vế trái, rồi phân tích, ta được:
(x – y + z)(x + y – z) < 0
(y – z + x)(y + z – x) < 0
(z – x + y)(z + x – y) < 0
(III) Sau đó, nhân vế theo vế ta thu được:(x – y + z(x + y – z)(-x + y + z) < 0 (vô lí)
Lý luận trên, nếu sai thì sai từ giai đoan nào?