Câu hỏi:
17/07/2024 1,857
Một gương có mặt cắt là một hypebol có phương trình được dùng để chụp ảnh toàn cảnh. Máy ảnh hướng về phía đỉnh của gương và được đặt ở vị trí sao cho ống kính trùng với một tiêu điểm của gương như hình vẽ.
Biết rằng x, y được đo theo inch. Khoảng cách từ ống kính tới đỉnh gương bằng khoảng:
Một gương có mặt cắt là một hypebol có phương trình được dùng để chụp ảnh toàn cảnh. Máy ảnh hướng về phía đỉnh của gương và được đặt ở vị trí sao cho ống kính trùng với một tiêu điểm của gương như hình vẽ.
Biết rằng x, y được đo theo inch. Khoảng cách từ ống kính tới đỉnh gương bằng khoảng:
A. 24,6 inch;
A. 24,6 inch;
B. 0,7 inch;
B. 0,7 inch;
C. 12 inch;
C. 12 inch;
D. 23,3 inch.
D. 23,3 inch.
Trả lời:
Hypebol nên ta có a = 12, b = 4.
Suy ra
Quan sát hình vẽ, ta thấy đỉnh gương là vị trí A2.
Suy ra A2(12; 0).
Vì nên ta có tọa độ các tiêu điểm và .
Khoảng cách từ ống kính tới đỉnh gương là:
F1A2 = F1O + OA2 = (inch).
Do đó ta chọn phương án A.
Hypebol nên ta có a = 12, b = 4.
Suy ra
Quan sát hình vẽ, ta thấy đỉnh gương là vị trí A2.
Suy ra A2(12; 0).
Vì nên ta có tọa độ các tiêu điểm và .
Khoảng cách từ ống kính tới đỉnh gương là:
F1A2 = F1O + OA2 = (inch).
Do đó ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là:
Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là:
Câu 2:
Giao điểm M của hai đường thẳng (d): và (d’): 3x – 2y – 1 = 0 là:
Giao điểm M của hai đường thẳng (d): và (d’): 3x – 2y – 1 = 0 là:
Câu 4:
Cho đường tròn (C): x2 + y2 + 4x + 4y – 17 = 0, biết tiếp tuyến của (C) song song với đường thẳng d: 3x – 4y – 2023 = 0. Phương trình tiếp tuyến của đường tròn (C) là:
Cho đường tròn (C): x2 + y2 + 4x + 4y – 17 = 0, biết tiếp tuyến của (C) song song với đường thẳng d: 3x – 4y – 2023 = 0. Phương trình tiếp tuyến của đường tròn (C) là:
Câu 5:
Cho đường tròn (C): x2 + y2 – 2x – 4y + 1 = 0. Gọi d1, d2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d1 và d2 là:
Cho đường tròn (C): x2 + y2 – 2x – 4y + 1 = 0. Gọi d1, d2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d1 và d2 là:
Câu 6:
Tọa độ tâm I và bán kính R của đường tròn (C): 2x2 + 2y2 – 8x + 4y – 1 = 0 là:
Tọa độ tâm I và bán kính R của đường tròn (C): 2x2 + 2y2 – 8x + 4y – 1 = 0 là:
Câu 7:
Cho M(x; y) nằm trên elip (E): . Tỉ số giữa tiêu cự và độ dài trục lớn bằng:
Cho M(x; y) nằm trên elip (E): . Tỉ số giữa tiêu cự và độ dài trục lớn bằng:
Câu 8:
Một trạm viễn thông A được xây tại điểm có tọa độ (2; 3) (trong mặt phẳng Oxy). Một người đang ngồi trên xe hơi chạy trên đường quốc lộ có dạng một đường thẳng ∆ có phương trình x – 5y + 6 = 0.
Biết rằng mỗi đơn vị độ dài tương ứng với 1 km. Khoảng cách ngắn nhất giữa người đó và trạm viễn thông A bằng:
Một trạm viễn thông A được xây tại điểm có tọa độ (2; 3) (trong mặt phẳng Oxy). Một người đang ngồi trên xe hơi chạy trên đường quốc lộ có dạng một đường thẳng ∆ có phương trình x – 5y + 6 = 0.
Biết rằng mỗi đơn vị độ dài tương ứng với 1 km. Khoảng cách ngắn nhất giữa người đó và trạm viễn thông A bằng:
Câu 9:
Một anten gương đơn hình parabol có phương trình y2 = 20x. Ống thu của anten được đặt tại tiêu điểm của nó. Ta sẽ đặt ống thu tại điểm có tọa độ là:
Một anten gương đơn hình parabol có phương trình y2 = 20x. Ống thu của anten được đặt tại tiêu điểm của nó. Ta sẽ đặt ống thu tại điểm có tọa độ là:
Câu 10:
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng là:
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng là:
Câu 11:
Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Câu 12:
Đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0, đồng thời tạo với d3: y – 1 = 0 một góc Phương trình đường thẳng ∆ là:
Đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0, đồng thời tạo với d3: y – 1 = 0 một góc Phương trình đường thẳng ∆ là:
Câu 13:
Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là:
Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là:
Câu 14:
Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là:
Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là:
Câu 15:
Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là:
Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là: