Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Bài tập cuối chương IX có đáp án

Trắc nghiệm Toán 10 Bài tập cuối chương IX có đáp án

Trắc nghiệm Toán 10 Bài tập cuối chương IX có đáp án

  • 255 lượt thi

  • 30 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

14/07/2024

Trong mặt phẳng Oxy, cho ∆ABC có A(–4; 1), B(2; 4), C(2; –2). Tọa độ trọng tâm I của ∆ABC là:

Xem đáp án

Đáp án đúng là: B

Ta có I là trọng tâm của ∆ABC.

Do đó {xI=xA+xB+xC3=4+2+23=0yI=yA+yB+yC3=1+423=1

Suy ra I(0; 1).

Vậy ta chọn phương án B.


Câu 2:

19/07/2024

Cho u=(4;5)  và v=(3;a)  . Tìm a để uv

Xem đáp án

Đáp án đúng là: B

Ta có uvu.v=0

4.3 + 5.a = 0    

12 + 5a = 0

5a = –12

Vậy ta chọn phương án B.


Câu 3:

20/07/2024

Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là:

Xem đáp án

Đáp án đúng là: C

Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là: (ảnh 1)

Với A(–1; 1), B(1; 3), C(5; 2) và D(xD; yD) ta có:

AB=(xBxA;yByA)=(1(1);31)=(2;2)DC=(xCxD;yCyD)=(5xD;2yD)

Tứ giác ABCD là hình bình hành AB=DC

{2=5xD2=2yD{xD=3yD=0

Ta suy ra tọa độ D(3; 0).

Vậy ta chọn phương án C.


Câu 4:

12/07/2024

Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng  là:

Xem đáp án

Đáp án đúng là: D

Ta có AB=(xBxA)2+(yByA)2Suy ra AB=(x6)2+(9+1)2=(x6)2+102

Theo đề, ta có AB = 55

(x6)2+102=55

x2 – 12x + 36 + 100 = 125

x2 – 12x + 11 = 0

x = 11 hoặc x = 1.

Vậy ta chọn phương án D.


Câu 5:

14/07/2024

Cho a=(1;2), b=(2;3). Góc giữa hai vectơ u=3a+2bvà v=a5b   bằng

Xem đáp án

Đáp án đúng là: D

Với a=(1;2), b=(2;3) ta có:

+) 3a=(3.1;3.2)=(3;6), 2b=(2.(2);2.3)=(4;6)

Suy ra u=3a+2b=(34;6+6)=(1;12)

a=(3;4), 5b=(5.(2);5.3)=(10;15)Suy ra v=a5b=(3(10);415)=(13;11)

 


Câu 6:

22/07/2024

Trong mặt phẳng Oxy, cho ∆ABC có A(–3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là trực tâm của ∆ABC. Giá trị của a + 6b bằng:

Xem đáp án

Trong mặt phẳng Oxy, cho ∆ABC có A(–3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là trực tâm của ∆ABC. Giá trị của a + 6b bằng: (ảnh 1)

+ Với A(–3; 0), B(3; 0), C(2; 6)H(a; b) ta có:

BC=(1;6),  AC=(5;6)AH=(a+3;b),  BH=(a3;b)

+ Vì H là trực tâm của ∆ABC nên AH BC.

Suy ra AHBC

Do đó AH.BC=0

Khi đó ta có (a + 3).(–1) + 6b = 0

Vì vậy –a + 6b – 3 = 0     (1).

+ Vì H là trực tâm của ∆ABC nên BH AC.

Suy ra BHAC

Do đó BH.AC=0

Khi đó ta có (a – 3).5 + 6b = 0

Vì vậy 5a + 6b – 15 = 0   (2).

Từ (1) và (2), ta có hệ phương trình:

{a+6b3=05a+6b15=0{a=2b=56

Vậy ta chọn phương án C.


Câu 7:

14/07/2024

Trong mặt phẳng với hệ tọa độ Oxy, cho ∆ABC có A(3; 5), B(9; 7), C(11; –1). Gọi M, N lần lượt là trung điểm của AB và AC. Tọa độ của MN  là:

Xem đáp án

Vì M là trung điểm AB nên {xM=xA+xB2=3+92=6yM=yA+yB2=5+72=6

Suy ra M(6; 6).

Vì N là trung điểm AC nên {xN=xA+xC2=3+112=7yN=yA+yC2=512=2

Suy ra N(7; 2).

Do đó ta có MN=(xNxM;yNyM)=(76;26)=(1;4)

Vậy ta chọn phương án B.


Câu 8:

23/07/2024

Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là:

Xem đáp án
Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là: (ảnh 1)

Vì ∆ABC có AM là đường trung tuyến nên M là trung điểm BC.

Ta suy ra {xM=xB+xC2=432=12yM=yB+yC2=5+22=72

Khi đó ta có M(12;72)

Với A(2; –1)M(12;72)  ta có: AM=(32;92)23AM=(1;3)

Đường thẳng AM có vectơ chỉ phương u=23AM=(1;3)  nên đường thẳng AM nhận n=(3;1)  làm vectơ pháp tuyến.

Đường thẳng AM đi qua A(2; –1), có vectơ pháp tuyến n=(3;1)

Suy ra phương trình tổng quát của đường thẳng AM là:

3.(x – 2) + 1.(y + 1) = 0

3x + y – 5 = 0.

Vậy ta chọn phương án C.


Câu 9:

21/07/2024

Giao điểm M của hai đường thẳng (d): {x=12ty=3+5t  và (d’): 3x – 2y – 1 = 0 là:

Xem đáp án

Đáp án đúng là: B

Đường thẳng (d): {x=12ty=3+5t

(d) có vectơ chỉ phương u=(2;5)

Suy ra (d) có vectơ pháp tuyến n=(5;2)

(d) đi qua A(1; –3), có vectơ pháp tuyến n=(5;2) nên có phương trình tổng quát là:

5(x – 1) + 2(y + 3) = 0

5x + 2y + 1 = 0.

Ta có M là giao điểm của (d) và (d’) nên tọa độ M là nghiệm của hệ phương trình:

{5xM+2yM+1=03xM2yM1=0{xM=0yM=12

Khi đó ta có M(0;12)


Câu 10:

22/07/2024

Cặp đường thẳng nào sau đây vuông góc với nhau?

Xem đáp án

Đáp án đúng là: B

Ta xét phương án A:

d1 có vectơ chỉ phương u1=(1;2)

Suy ra d1 có vectơ pháp tuyến n1=(2;1)

d2 có vectơ pháp tuyến n2=(2;1)

Do đó n1.n2=2.2+1.1=50

Khi đó ta có d1 không vuông góc với d2.

Vậy ta loại phương án A.

Ta xét phương án B:

d1 có vectơ pháp tuyến n1=(1;0)

d2 có vectơ chỉ phương u2=(1;0)

Suy ra d2 có vectơ pháp tuyến n2=(0;1)

Khi đó ta có n1.n2=1.0+0.1=0

Do đó n1n2

Vì vậy d1 d2.

Đến đây ta có thể chọn phương án B.

• Ta thực hiện tương tự như trên, ta loại phương án C, D.

Vậy ta chọn phương án B.


Câu 11:

14/07/2024

Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?

Xem đáp án

Đáp án đúng là: A

(d): x – 2y + 5 = 0 2y = x + 5 ⇔ y=12x+52

Do đó (d) có hệ số góc k=12

Vì vậy phương án A đúng.

(d) và (d’) có vectơ pháp tuyến lần lượt là n=(1;2) và n'=(1;2).

Ta có n=n'

Do đó (d) và (d’) song song hoặc trùng nhau.

Vì vậy phương án B sai.

Thay tọa độ A(1; –2) vào phương trình (d), ta được:

1 – 2.(–2) + 5 = 10 ≠ 0.

Suy ra A(1; –2) không thuộc (d) hay (d) không đi qua A(1; –2).

Do đó phương án C sai.

(d) có vectơ pháp tuyến n=(1;2) .

Suy ra (d) có vectơ chỉ phương u=(2;1)  .

Ở phương án D, ta có vectơ chỉ phương a=(1;2) .

Ta có: 2.(–2) – 1.1 = –5 ≠ 0.

Suy ra  không cùng phương với .

Do đó phương trình tham số ở đáp án D không phải là phương trình tham số của (d).

Vì vậy phương án D sai.

Vậy ta chọn phương án A.


Câu 12:

14/07/2024

Cho ∆ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

Xem đáp án

Đáp án đúng là: A

Cho ∆ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là: (ảnh 1)

Đường cao BH: x – y + 2 = 0 có vectơ pháp tuyến là nBH=(1;1)  .

Vì BH là đường cao của ∆ABC nên BH AC.

Suy ra vectơ pháp tuyến của BH là vectơ chỉ phương của AC.

Do đó vectơ chỉ phương của AC là uAC=nBH=(1;1) .

Vì vậy AC có vectơ pháp tuyến là nAC=(1;1) .

Đường thẳng AC đi qua C(–1; 2), có vectơ pháp tuyến nAC=(1;1)

Suy ra phương trình AC: 1(x + 1) + 1(y – 2) = 0.

x + y – 1 = 0.

Ta có A là giao điểm của AC và AN.

Do đó tọa độ của điểm A là nghiệm của hệ phương trình:

{x+y1=02xy+5=0{x=43y=73

Khi đó ta có A(43;73)

Vậy ta chọn phương án A.


Câu 13:

14/07/2024

Trong mặt phẳng Oxy, cho a=(1;2) và b=(1;3)   . Tìm tọa độ  sao cho 2c+a3b=0

Xem đáp án

Đáp án đúng là: C

Ta có

 2c+a3b=02c=3bac=32b12aVi a=(1;2) và b=(1;3) ta có:

32b=(32.(1);32.3)=(32;92)12a=(12.1;12.2)=(12;1)Suy ra c=32b12a=(3212;921)=(2;72)

Vậy ta chọn phương án C.


Câu 14:

21/07/2024

Trong mặt phẳng Oxy, cho hai điểm A(2; 4) và B(–2; 10). Giá trị k để điểm D(k; k + 1) thuộc đường thẳng AB là:

Xem đáp án

Đáp án đúng là: D

Với A(2; 4), B(–2; 10)D(k; k + 1)  ta có:

AB=(xBxA;yByA)=(22;104)=(4;6)AD=(xDxA;yDyA)=(k2;k+14)=(k2;k3)

Theo đề, ta có điểm D(k; k + 1) thuộc đường thẳng AB.

Tức là  cùng phương

–4.(k – 3) – 6.(k – 2) = 0

–4k + 12 – 6k + 12 = 0

10k = 24

k = 12/5

Vậy ta chọn phương án D.


Câu 15:

18/07/2024

Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là:

Xem đáp án

Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là: (ảnh 1)

Với A(–1; 2). B(2; 1) ta có:

AB=(3;1)AB=32+(1)2=10

Đường thẳng AB có vectơ chỉ phương AB=(3;1)  nên đường thẳng AB nhận n=(1;3)  làm vectơ pháp tuyến.

Đường thẳng AB đi qua B(2; 1), có vectơ pháp tuyến n=(1;3)  nên có phương trình tổng quát là:

1.(x – 2) + 3.(y – 1) = 0 x + 3y – 5 = 0.

Vì C d nên ta có xC + 2yC – 3 = 0.

Suy ra xC = 3 – 2yC

Khi đó ta có C(3 – 2yC; yC)

Gọi CH là đường cao của ∆ABC.

Ta suy ra CH = d(C, AB) = |32yC+3yC5|12+32=|yC2|10

Ta có S∆ABC = 2.

|yC – 2| = 4

yC – 2 = 4 hoặc yC – 2 = –4.

yC = 6 hoặc yC = –2.

Với yC = 6, ta có: xC = 3 – 2yC = 3 – 2.6 = –9.

Suy ra C(–9; 6).

Với yC = –2, ta có: xC = 3 – 2yC = 3 – 2.( –2) = 7.

Suy ra C(7; –2).

Vậy có hai điểm C thỏa mãn yêu cầu bài toán là C(–9; 6), C(7; –2).

Do đó ta chọn phương án D.


Câu 16:

12/07/2024

Đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0, đồng thời tạo với d3: y – 1 = 0 một góc π4.  Phương trình đường thẳng ∆ là:

Xem đáp án

Gọi A(x; y) là giao điểm của hai đường thẳng d1 và d2.

Khi đó tọa độ A là nghiệm của hệ phương trình:

{2x+y3=0x2y+1=0x=y=1

Suy ra A(1; 1).

Gọi n=(a;b)  là vectơ pháp tuyến của đường thẳng ∆.

d3 có vectơ pháp tuyến n3=(0;1) .

Theo đề, ta có (∆, d3) = π4 .

Suy ra |cos(n,n3)|=cosπ4=12

|0.a+1.b|a2+b2.02+12=122.|b|=a2+b2

2b2 = a2 + b2

a2 = b2

a = b hoặc a = –b.

• Với a = b: Chọn a = b = 1, ta được .

Đường thẳng ∆ đi qua A(1; 1), có vectơ pháp tuyến  nên có phương trình tổng quát là:

1(x – 1) + 1(y – 1) = 0 x + y – 2 = 0.

Với a = –b: Chọn b = –1, ta suy ra a = 1.

Khi đó ta có n=(1;1) .

Đường thẳng ∆ đi qua A(1; 1), có vectơ pháp tuyến n=(1;1) nên có phương trình tổng quát là:

1(x – 1) – 1(y – 1) = 0 x – y = 0.

Vậy có hai đường thẳng ∆ thỏa mãn yêu cầu bài toán có phương trình là:

x + y – 2 = 0; x – y = 0.

Do đó ta chọn phương án C.


Câu 17:

12/07/2024

Tọa độ tâm I và bán kính R của đường tròn (C): (x + 1)2 + y2 = 8 là:

Xem đáp án

Đường tròn (C) có tâm I(–1; 0), bán kính R = 8=22 .

Vậy ta chọn phương án C.


Câu 18:

23/07/2024

Tọa độ tâm I và bán kính R của đường tròn (C): 2x2 + 2y2 – 8x + 4y – 1 = 0 là:

Xem đáp án

Ta có 2x2 + 2y2 – 8x + 4y – 1 = 0.

Suy ra x2 + y2 – 4x + 2y – 1/2 = 0.

Phương trình (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = 2, b = –1, c = -1/2.

Suy ra tâm I(2; –1).

Ta có R2 = a2 + b2 – c = 4+1+12=112 .

Suy ra R=112=222

Do đó ta chọn phương án B.


Câu 19:

14/07/2024

Đường tròn (C) có tâm I(–2; 3) và đi qua điểm M(2; –3) có phương trình là:

Xem đáp án

Với I(–2; 3) M(2; –3)  ta có IM=(4;6) .

Đường tròn (C) có tâm I(–2; 3) và đi qua điểm M(2; –3) nên bán kính là:

R=IM=42+(6)2=213

Phương trình đường tròn (C) là: (x + 2)2 + (y – 3)2 = 52.

Û x2 + y2 + 4x – 6y – 39 = 0.

Vậy ta chọn phương án D.


Câu 20:

19/07/2024

Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:

Xem đáp án

Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0, với a = m, b = 2(m – 2), c = 6 – m.

Ta có a2 + b2 – c = m2 + 4(m2 – 4m + 4) – 6 + m = 5m2 – 15m + 10.

Để phương trình đã cho là phương trình đường tròn thì a2 + b2 – c > 0.

Nghĩa là 5m2 – 15m + 10 > 0

m < 1 hoặc m > 2.

Vậy m (–; 1) (2; +) thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án B.


Câu 21:

22/07/2024

Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là:

Xem đáp án

Gọi I(a; b) là tâm của đường tròn (C).

Ta có I d.

Suy ra a + 3b + 8 = 0 a = –3b – 8.

Ta có đường tròn (C) đi qua điểm A(–2; 1) nên AI = R (1).

Lại có đường tròn (C) tiếp xúc với đường thẳng ∆ nên d(I, ∆) = R (2).

Từ (1), (2), ta suy ra IA = d(I, ∆).

(a+2)2+(b1)2=|3a4b+10|32+(4)2(3b8+2)2+(b1)2=|3(3b8)4b+10|32+(4)25(3b6)2+(b1)2=|13b14|

25(9b2 + 36b + 36 + b2 – 2b + 1) = 169b2 + 364b + 196

81b2 + 486b + 729 = 0

b = –3.

Với b = –3, ta có a = –3b – 8 = –3.(–3) – 8 = 1.

Khi đó ta có I(1; –3).

R = AI = (1+2)2+(31)2=5

Vậy phương trình đường tròn (C) là: (x – 1)2 + (y + 3)2 = 25.

Vậy ta chọn phương án D.


Câu 22:

14/07/2024

Tọa độ tâm I của đường tròn đi qua ba điểm A(0; 4), B(2; 4), C(4; 0) là:

Xem đáp án
Tọa độ tâm I của đường tròn đi qua ba điểm A(0; 4), B(2; 4), C(4; 0) là: (ảnh 1)

Gọi M, N lần lượt là trung điểm của AB, BC.

Vì M là trung điểm AB nên ta có {xM=xA+xB2=0+22=1yM=yA+yB2=4+42=4

Suy ra M(1; 4).

Tương tự, ta có N(3; 2).

Đường trung trực ∆1 của đoạn thẳng AB đi qua điểm M(1; 4) và có vectơ pháp tuyến AB=(2;0)

Suy ra phương trình ∆1 là: 2(x – 1) + 0(y – 4) = 0 x – 1 = 0.

Tương tự, ta có phương trình đường trung trực ∆2 của đoạn thẳng BC đi qua điểm N(3; 2) và có vectơ pháp tuyến BC=(2;4)  là:

2(x – 3) – 4(y – 2) = 0 Û x – 2y + 1 = 0.

Vì IA = IB = IC = R nên I cách đều ba điểm A, B, C.

Do đó I nằm trên đường trung trực ∆1 và I cũng nằm trên đường trung trực ∆2.

Hay I là giao điểm của ∆1 và ∆2.

Khi đó tọa độ I là nghiệm của hệ phương trình:

{x1=0x2y+1=0{x=1y=1

Suy ra tọa độ tâm I(1; 1).

Vậy ta chọn phương án D.


Câu 23:

20/07/2024

Cho đường tròn (C): x2 + y2 + 4x + 4y – 17 = 0, biết tiếp tuyến của (C) song song với đường thẳng d: 3x – 4y – 2023 = 0. Phương trình tiếp tuyến của đường tròn (C) là:

Xem đáp án

Gọi ∆ là tiếp tuyến cần tìm.

Phương trình đường tròn (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = –2, b = –2, c = –17.

Suy ra tâm I(–2; –2), bán kính R = a2+b2c=(2)2+(2)2+17=5

Vì ∆ // d nên phương trình ∆ có dạng: 3x – 4y + d = 0 (d ≠ –2023).

Ta có ∆ là tiếp tuyến của (C).

Suy ra d(I, ∆) = R.

|3.(2)4.(2)+d|32+(4)2=5

|d + 2| = 25

d + 2 = 25 hoặc d + 2 = –25

d = 23 (nhận) hoặc d = –27 (nhận).

Vậy có 2 tiếp tuyến thỏa yêu cầu bài toán có phương trình là: 3x – 4y + 23 = 0 và 3x – 4y – 27 = 0.

Do đó ta chọn phương án A.


Câu 24:

14/07/2024

Cho đường tròn (C): (x – 2)2 + (y + 4)2 = 25, biết tiếp tuyến vuông góc với đường thẳng d: 3x – 4y + 5 = 0. Phương trình tiếp tuyến của (C) là:

Xem đáp án

Gọi ∆ là tiếp tuyến cần tìm.

Đường tròn (C) có tâm I(2; –4), bán kính R = 5.

Đường thẳng d có vectơ pháp tuyến nd=(3;4)

Theo đề, ta có ∆ d nên ∆ nhận vectơ pháp tuyến của d làm vectơ chỉ phương.

Do đó ∆ có vectơ chỉ phương u=nd=(3;4)

Khi đó ∆ có vectơ pháp tuyến nΔ=(4;3)

Vì vậy phương trình tiếp tuyến cần tìm có dạng ∆: 4x + 3y + c = 0.

Vì ∆ là tiếp tuyến của đường tròn (C) nên d(I, ∆) = R.

|4.2+3.(4)+c|42+32=5

|c – 4| = 25

c – 4 = 25 hoặc c – 4 = –25

c = 29 hoặc c = –21.

Vậy ∆: 4x + 3y + 29 = 0 hoặc ∆: 4x + 3y – 21 = 0.

Do đó ta chọn phương án D.


Câu 25:

23/07/2024

Cho đường tròn (C): x2 + y2 – 2x – 4y + 1 = 0. Gọi d1, d2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d1 và d2 là:

Xem đáp án

Ta viết phương trình d1:

Ta có 32 + 22 – 2.3 – 4.2 + 1 = 0 (đúng).

Do đó điểm M (C).

Phương trình đường tròn (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = 1, b = 2, c = 1.

Suy ra tâm I(1; 2), bán kính R = a2+b2c=1+41=2 .

Phương trình d1 là: (1 – 3)(x – 3) + (2 – 2)(y – 2) = 0

–2(x – 3) = 0 x – 3 = 0.

Tương tự, ta viết phương trình d2:

Ta có 12 + 02 – 2.1 – 4.0 + 1 = 0 (đúng).

Do đó N (C).

Phương trình d2 là: (1 – 1)(x – 1) + (2 – 0)(y – 0) = 0

y = 0.

Gọi A là giao điểm của d1 và d2.

Suy ra tọa độ A là nghiệm của hệ phương trình: 

{x3=0y=0{x=3y=0

Khi đó ta có tọa độ A(3; 0).

Vậy ta chọn phương án A.


Câu 26:

12/07/2024

Một trạm viễn thông A được xây tại điểm có tọa độ (2; 3) (trong mặt phẳng Oxy). Một người đang ngồi trên xe hơi chạy trên đường quốc lộ có dạng một đường thẳng ∆ có phương trình x – 5y + 6 = 0.

Một trạm viễn thông A được xây tại điểm có tọa độ (2; 3) (trong mặt phẳng Oxy). Một người đang ngồi trên xe hơi chạy trên đường quốc lộ có dạng một đường thẳng ∆ có phương trình x – 5y + 6 = 0.    Biết rằng mỗi đơn vị độ dài tương ứng với 1 km. Khoảng cách ngắn nhất giữa người đó và trạm viễn thông A bằng: (ảnh 1)

Biết rằng mỗi đơn vị độ dài tương ứng với 1 km. Khoảng cách ngắn nhất giữa người đó và trạm viễn thông A bằng:

Xem đáp án

Khoảng cách ngắn nhất giữa người đó và trạm viễn thông A chính là khoảng cách từ A đến đường thẳng ∆. Khi đó ta có:

d(A,Δ)=|25.3+6|12+(5)2=726261,37(km).

Vậy ta chọn phương án C.


Câu 27:

20/07/2024

Cho M(x; y) nằm trên elip (E): x2121+y281=1 . Tỉ số giữa tiêu cự và độ dài trục lớn bằng:

Xem đáp án

(E): x2121+y281=1  nên ta có a = 11, b = 9.

Suy ra c=a2b2=12181=210

Ta có tỉ số giữa tiêu cự và độ dài trục lớn là: 2c2a=ca=21011

Vậy ta chọn phương án C.

Câu 28:

17/07/2024

Một gương có mặt cắt là một hypebol có phương trình x2144y216=1  được dùng để chụp ảnh toàn cảnh. Máy ảnh hướng về phía đỉnh của gương và được đặt ở vị trí sao cho ống kính trùng với một tiêu điểm của gương như hình vẽ.

Một gương có mặt cắt là một hypebol có phương trình  x^2/144 - y^2/16 = 1 được dùng để chụp ảnh toàn cảnh. Máy ảnh hướng về phía đỉnh của gương và được đặt ở vị trí sao cho ống kính trùng với một tiêu điểm của gương như hình vẽ. (ảnh 1)

Biết rằng x, y được đo theo inch. Khoảng cách từ ống kính tới đỉnh gương bằng khoảng:

Xem đáp án

Hypebol x2144y216=1  nên ta có a = 12, b = 4.

Suy ra c=a2+b2=144+16=410

Quan sát hình vẽ, ta thấy đỉnh gương là vị trí A2.

Suy ra A2(12; 0).

c=410  nên ta có tọa độ các tiêu điểm F1(410;0) và F2(410;0)   .

Khoảng cách từ ống kính tới đỉnh gương là:

F1A2 = F1O + OA2 = |410|+|12|=410+1224,6  (inch).

Do đó ta chọn phương án A.


Câu 29:

14/07/2024

Một tòa tháp có mặt cắt hình hypebol có phương trình x236y249=1 . Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:

Xem đáp án
Một tòa tháp có mặt cắt hình hypebol có phương trình x^2/36 - y^2/49 = 1 . Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng: (ảnh 1)

Gọi r là bán kính đáy của tháp (r > 0).

Do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.

Chọn điểm M(r; –25) nằm trên hypebol.

Ta suy ra

 r236(25)249=1r236=1+(25)249=67449r2=67449.36=2426449Suy ra r=6674722,25

Vậy bán kính đáy của tháp bằng khoảng 22,25 m.

Do đó ta chọn phương án B.


Câu 30:

19/07/2024

Một anten gương đơn hình parabol có phương trình y2 = 20x. Ống thu của anten được đặt tại tiêu điểm của nó. Ta sẽ đặt ống thu tại điểm có tọa độ là:

Xem đáp án

Phương trình parabol có dạng y2 = 2px, với p = 10.

Suy ra p2=102=5

Khi đó tọa độ tiêu điểm F(5; 0).

Vậy ta sẽ đặt ống thu tại điểm có tọa độ (5; 0).

Do đó ta chọn phương án D.


Bắt đầu thi ngay