Câu hỏi:

18/07/2024 242

Khi nào thì \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}?\)


A. \(\overrightarrow u .\overrightarrow v \) = 0;



B. Góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \) là 0° hoặc 180°;


Đáp án chính xác


C. \(\overrightarrow u .\overrightarrow v \) = 1;



D. Góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \) là 90°.


Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Ta có: \(\overrightarrow u .\overrightarrow v = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right)\)

\( \Leftrightarrow {\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\left[ {\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right)} \right]^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}.c{\rm{o}}{{\rm{s}}^2}\left( {\overrightarrow u ,\overrightarrow v } \right)\)

Để \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}\) thì \(c{\rm{o}}{{\rm{s}}^2}\left( {\overrightarrow u ,\overrightarrow v } \right) = 1 \Leftrightarrow \left[ \begin{array}{l}c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right) = 1\\c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right) = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left( {\overrightarrow u ,\overrightarrow v } \right) = {0^0}\\\left( {\overrightarrow u ,\overrightarrow v } \right) = {180^0}\end{array} \right.\)

Vậy khi góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \) là 00 hoặc 1800 thì \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vecto \(\overrightarrow a \)\(\overrightarrow b \) trong trường hợp \(\overrightarrow a \left( {3;1} \right),\overrightarrow b \left( {2;4} \right)\).

Xem đáp án » 22/07/2024 2,399

Câu 2:

Cho tam giác ABC có trọng tâm G. Với điểm M bất kì, đẳng thức nào sau đây đúng?

Xem đáp án » 19/07/2024 426

Câu 3:

Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 22/07/2024 321

Câu 4:

Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?

Xem đáp án » 19/07/2024 305

Câu 5:

Cho tam giác ABC có BC = a, CA = b, AB = c. Hãy tính \(\overrightarrow {AB} .\overrightarrow {AC} \) theo a, b, c.

Xem đáp án » 23/07/2024 267

Câu 6:

Cho đoạn thẳng AB và điểm I là trung điểm của đoạn thẳng AB. Với điểm M bất kì, khẳng định nào dưới đây là đúng?

Xem đáp án » 20/07/2024 184

Câu 7:

Tính tích vô hướng của hai vectơ \(\overrightarrow u \left( {1; - 3} \right),\overrightarrow v \left( {\sqrt 7 ;\,\, - 2} \right)\) là k. Nhận xét nào sau đây đúng về giá trị của k.

Xem đáp án » 19/07/2024 181

Câu 8:

Góc giữa vectơ \(\overrightarrow a \left( { - 1; - 1} \right)\) và vecto \(\overrightarrow b \left( { - 1;0} \right)\) có số đo bằng:

Xem đáp án » 12/07/2024 177

Câu 9:

Khi nào tích vô hướng của hai vecto \(\overrightarrow u ,\overrightarrow v \) là một số dương.

Xem đáp án » 22/07/2024 175

Câu 10:

Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; -3), B(5; 2). Tìm điểm M thuộc tia Oy để góc \(\widehat {AMB} = {90^0}.\)

Xem đáp án » 20/07/2024 175

Câu 11:

Khi nào thì hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) vuông góc?

Xem đáp án » 14/07/2024 168

Câu 12:

Tìm điều kiện của \(\overrightarrow u ,\overrightarrow v \) để \(\overrightarrow u .\overrightarrow v = - \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\)

Xem đáp án » 15/07/2024 158

Câu 13:

Trong mặt phẳng tọa độ Oxy, cho điểm A(-1; 3), B(0; 4) và C(2x – 1; 3x2). Tổng các giá trị của x thỏa mãn \(\overrightarrow {AB} .\overrightarrow {AC} = 2\)

Xem đáp án » 22/07/2024 152

Câu 14:

Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?

Xem đáp án » 20/07/2024 149

Câu 15:

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1), B(2;4), C(2;-2). Gọi H(x; y) là trực tâm của tam giác ABC. Tính S = 5x + y.

Xem đáp án » 23/07/2024 145

Câu hỏi mới nhất

Xem thêm »
Xem thêm »