Câu hỏi:
23/07/2024 216Giải bóng chuyền VTV Cup gồm 9 đội bóng tham dự, trong đó có 6 đội nước ngoài và 3 đội của Việt Nam. Ban tổ chức cho bốc thăm ngẫu nhiên để chia thành 3 bảng A, B, C và mỗi bảng có 3 đội. Tính xác suất để 3 đội bóng của Việt Nam ở 3 bảng khác nhau.
A. \(\frac{9}{{28}}\);
B. \(\frac{7}{{28}}\);
C. \(\frac{8}{{28}}\);
D. \(\frac{{10}}{{28}}\).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Không gian mẫu là số cách chia tùy ý 9 đội thành 3 bảng, ta có: n(Ω) = \(C_9^3.C_6^3.C_3^3 = 1680\)
Gọi biến cố A: “3 đội bóng của Việt Nam ở 3 bảng khác nhau”
Xếp 3 đội Việt Nam ở 3 bảng khác nhau có 3! = 6 cách
Xếp 6 đội còn lại vào 3 bảng A, B, C này có \(C_6^2.C_4^2.C_2^2 = 90\)cách
Do đó, n(A) = 6 . 90 = 540.
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{540}}{{1680}} = \frac{9}{{28}}\).
Hướng dẫn giải
Đáp án đúng là: A
Không gian mẫu là số cách chia tùy ý 9 đội thành 3 bảng, ta có: n(Ω) = \(C_9^3.C_6^3.C_3^3 = 1680\)
Gọi biến cố A: “3 đội bóng của Việt Nam ở 3 bảng khác nhau”
Xếp 3 đội Việt Nam ở 3 bảng khác nhau có 3! = 6 cách
Xếp 6 đội còn lại vào 3 bảng A, B, C này có \(C_6^2.C_4^2.C_2^2 = 90\)cách
Do đó, n(A) = 6 . 90 = 540.
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{540}}{{1680}} = \frac{9}{{28}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong thư viện có 12 quyển sách gồm 3 quyển Toán giống nhau, 3 quyển Lý giống nhau, 3 quyển Hóa giống nhau và 3 quyển Sinh giống nhau. Xác suất 3 quyển sách thuộc cùng 1 môn không được xếp liền nhau ?
Câu 2:
Một hộp đựng 10 chiếc thẻ được đánh số từ 0 đến 9. Lấy ngẫu nhiên ra 3 chiếc thẻ, tính xác suất để 3 chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5.
Câu 3:
Cho tập hợp A = {2; 3; 4; 5; 6; 7; 8}. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S, xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ là: