Câu hỏi:
23/07/2024 760Định nghĩa nào sau đây là định nghĩa đường parabol?
A. Cho điểm F cố định và một đường thẳng \(\Delta \) cố định không đi qua F. Parabol (P) là tập hợp các điểm M sao cho khoảng cách từ M đến F bằng khoảng cách từ M đến \(\Delta \).
B. Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c, (c > 0). Parabol (P) là tập hợp điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\) với a là một số không đổi và a < c.
C. Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c, (c > 0). và một độ dài 2a không đổi (a > c). Parabol (P) là tập hợp các điểm M sao cho
D. Cả ba định nghĩa trên đều không đúng định nghĩa của parabol.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Cho điểm F cố định và một đường thẳng \(\Delta \) cố định không đi qua F. Parabol (P) là tập hợp các điểm M sao cho khoảng cách từ M đến F bằng khoảng cách từ M đến \(\Delta \).
Hướng dẫn giải
Đáp án đúng là: A
Cho điểm F cố định và một đường thẳng \(\Delta \) cố định không đi qua F. Parabol (P) là tập hợp các điểm M sao cho khoảng cách từ M đến F bằng khoảng cách từ M đến \(\Delta \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây sai?
Câu 2:
Cho parabol (P) có phương trình chính tắc là \({y^2} = 2px\), với p > 0. Khi đó khẳng định nào sau đây sai?
Câu 5:
Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây đúng về tỉ số \(\frac{c}{a}\)?
Câu 6:
Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây đúng?
Câu 8:
Elip \[\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\] có độ dài trục lớn bằng:
Câu 10:
Elip \[\left( E \right):{x^2} + 4{y^2} = 16\] có độ dài trục lớn bằng:
Câu 11:
Elip \[\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\] có tiêu cự bằng:
Câu 12:
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục bé bằng: