Câu hỏi:
22/07/2024 187Điểm kiểm tra thường xuyên của 11 học sinh lớp 10 cho bởi bảng sau:
Học sinh | A | B | C | D | E | F | G | H | I | K | M |
Điểm | 7 | 8 | 9 | 10 | 9 | 8 | 3 | 6 | 7 | 8 | 9 |
Giá trị bất thường của mẫu số liệu trên là
A. 3;
B. 6;
C. 9;
D. 10.
Trả lời:
Đáp án đúng là: A
Ta sắp xếp mẫu số liệu theo thứ tự không giảm: 3; 6; 7; 7; 8; 8; 8; 9; 9; 9; 10.
Vì n = 11 là số lẻ nên Q2 là số chính giữa của mẫu số liệu: Q2 = 8.
Ta tìm Q1 là trung vị nửa số liệu bên trái Q2: 3; 6; 7; 7; 8 gồm 5 giá trị, và ta tìm được Q1 = 7.
Ta tìm Q3 là trung vị nửa số liệu bên phải Q2: 8; 9; 9; 9; 10 gồm 5 giá trị, và ta tìm được Q3 = 9
Vậy khoảng tứ phân vị ∆Q = 9 – 7 = 2
Ta có Q1 – 1,5.∆Q = 4 và Q3 + 1,5∆Q = 12 nên trong mẫu số liệu có một giá trị bất thường là 3 (bé hơn 4).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giả sử biết số đúng là 5219,3. Sai số tuyệt đối khi quy tròn số này đến hàng chục là
Câu 2:
Số đo chiều cao (đơn vị cm) của học sinh trong tổ 1 lớp 10A cho kết quả như sau: 156; 159; 162; 165; 163; 159; 155; 160. Chiều cao trung bình của học sinh tổ 1 là:
Câu 3:
Điều tra chiều cao của 10 hs lớp 10A cho kết quả như sau: 154; 160; 155; 162; 165; 162; 155; 160; 165; 162 (đơn vị cm). Khoảng tứ phân vị là
Câu 4:
Một cửa hàng dép da đã thống kê cỡ dép của một số khách hàng nam cho kết quả như sau: 39; 38; 39; 40; 41; 41; 43; 37; 38; 40; 43; 41; 42; 41; 42. Tìm trung vị của mẫu số liệu trên
Câu 5:
Giá của một loại quần áo (đơn vị nghìn đồng) cho bởi số liệu như sau: 350; 300; 350; 400; 450; 400; 450; 350; 350; 400. Tứ phân vị của số liệu là
Câu 6:
Mẫu số liệu sau đây cho biết sĩ số của 12 lớp ở một trường trung học như sau: 45; 43; 46; 41; 40; 40; 42; 41; 45; 45; 43; 42. Khoảng tứ phân vị của mẫu số liệu là
Câu 7:
Điểm kiểm tra học kỳ của 10 học sinh được thống kê như sau: 6; 7; 7; 5; 8; 6; 9; 9; 8; 6. Khoảng biến thiên của dãy số là
Câu 8:
Số học sinh trong 4 tổ của lớp 10A là 9; 10; 8; 9. Độ lệch chuẩn của mẫu số liệu là
Câu 9:
Cho biết \(\sqrt 2 \) = 1,4142135.... Viết gần đúng số \(\sqrt 2 \) theo quy tắc làm tròn đến hàng phần nghìn, sai số tuyệt đối ước lượng được là
Cho biết \(\sqrt 2 \) = 1,4142135.... Viết gần đúng số \(\sqrt 2 \) theo quy tắc làm tròn đến hàng phần nghìn, sai số tuyệt đối ước lượng được là
Câu 10:
Sản phẩm bình quân trong một giờ của công nhân trong 10 ngày liên tiếp của công ty A được thống kê bởi dãy số liệu: 30; 40; 32; 40; 50; 45; 42; 42; 45; 50. Tìm tứ phân vị của mẫu số liệu
Câu 11:
Số quy tròn của số gần đúng a = 4,1356 biết ā = 4,1356 ± 0,001 là
C; 4,15;
Câu 12:
Điểm kiểm tra của 11 học sinh cho bởi bảng số liệu sau
Điểm | 7 | 7,5 | 8 | 8,5 | 9 | 9,5 |
Tần số | 1 | 2 | 3 | 2 | 2 | 1 |
Tìm phương sai của bảng số liệu
Câu 13:
Cho mẫu số liệu 5; 6; 7; 8; 9. Phương sai của mẫu số liệu trên là
Câu 14:
Thực hiện đo chiều cao của 4 ngôi nhà, kết quả đo đạc nào trong các kết quả sau chính xác nhất
Câu 15:
Điểm thi học kỳ 11 môn của một học sinh như sau: 4; 6; 5; 7; 5; 5; 9; 8; 7; 10; 9. Số trung bình và trung vị lần lượt là